

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs

Course Code: 23CH3PCFME/22CH3PCFME

Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive barometric equation for isothermal condition using the principles of hydrostatic equilibrium.			CO1	PO 2	12
		b)	An inverted U-tube manometer contains a liquid of density 700 kg/m^3 as the manometric fluid. It is connected across pipes X and Y, conveying liquids of sp.gr 1.2 and 1.0 and immiscible with manometric fluid. Pipes X and Y are located at the same level. The height of pipe 'X' from horizontal line is $(h+300\text{mm})$. Enumerate the differential reading 'h'.			CO1	PO3	08
OR								
	2	a)	Analyze the plot of shear stress versus velocity gradient for Newtonian and non-Newtonian fluids.			CO1	PO3	10
		b)	Explain Boundary layer separation and wake formation with a neat sketch.			CO1	PO 2	10
			UNIT - II					
	3	a)	Derive Bernoulli's Equation from Newton's second law of motion.			CO3, CO 4	PO3	10
		b)	Water flows through the pipe PQ 0.6 m radius at 300 cm/s and then passes through pipe QR which is 0.75 m in radius. At point 'R' the pipe branches. Branch RS is 80 cm in diameter and carries $1/3^{\text{rd}}$ of the flow in PQ. The flow velocity in branch RT is 250 cm/s. Find the discharge in PQ, velocity in QR, velocity in RS and diameter of the pipe RT.			CO3, 4	PO3	10
OR								
	4	a)	Water is flowing through a pipe of diameters 300 mm & 200 mm at the bottom and upper end respectively. The intensity of pressure at bottom end is 24.525N/cm^2 and the pressure at the upper end is 9.81 N/cm^2 . Compute the difference in datum head if the rate of flow through the pipe is 40 lit/sec.			CO 3,4	PO3	10

	b)	Obtain the relation between friction factor and Reynolds number in laminar flow and describe the Friction factor chart with a neat sketch.	CO 3,4	PO2	10
		UNIT - III			
5	a)	Define Mach number. Compare Sonic, Subsonic and Super Sonic flow.	CO 3,4	PO2	10
	b)	Derive an expression for stagnation pressure under adiabatic conditions for a compressible fluid.	CO 3,4	PO 3	10
		OR			
6	a)	Derive the equation of continuity for compressible flow.	CO 3,4	PO2	10
	b)	Deduce the equation for velocity of sound for isothermal process.	3,4	PO2	10
		UNIT - IV			
7	a)	Deduce the flow equation for a Venturi meter.	CO2	PO2	12
	b)	Explain the construction and working principal of a Pitot Tube.	CO2	PO1	08
		OR			
8	a)	Describe the constructional details and working of an orifice meter.	CO2	PO1	10
	b)	Analyze the performance characteristic curves of a centrifugal pump.	CO2	PO3	10
		UNIT - V			
9	a)	List the factors to be considered while selecting the repeating variables in Buckingham Π -method of dimensional analysis.	CO4	PO1	08
	b)	Using Buckingham π - method of dimensional analysis, show that the velocity through an orifice is,	CO4	PO3	12
		$V = \sqrt{2gH} \phi \left(\frac{D}{H}, \frac{\mu}{\rho VH} \right)$			
		OR			
10	a)	The pressure difference ΔP in a pipe of diameter D and length L due to viscous flow depends on the velocity V , viscosity μ and density ρ . Deduce a relation for pressure drop using Buckingham Π -theorem of dimensional analysis.	CO4	PO3	12
	b)	Discuss the significance of dimensionless numbers used in fluid flow phenomena.	CO4	PO2	08
