

U.S.N.									
--------	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH3DCMOP

Course: Mechanical Operations

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																																			
1	a)	Differentiate between Ideal and Actual Screens. Obtain an expression for the overall screen effectiveness.	<i>CO1</i>	<i>PO1</i>	8																																			
	b)	Evaluate the surface-volume mean diameter for the following size distribution by cumulative analysis.	<i>CO2</i>	<i>PO2</i>	8																																			
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Mesh no</th> <th>Size range mm</th> <th>Mass fraction</th> </tr> </thead> <tbody> <tr><td>-</td><td>4.699</td><td>--</td></tr> <tr><td>4/6</td><td>3.327</td><td>0.031</td></tr> <tr><td>6/8</td><td>2.362</td><td>0.103</td></tr> <tr><td>8/10</td><td>1.651</td><td>0.2</td></tr> <tr><td>10/14</td><td>1.168</td><td>0.186</td></tr> <tr><td>14/20</td><td>0.833</td><td>0.152</td></tr> <tr><td>20/28</td><td>0.589</td><td>0.12</td></tr> <tr><td>28/35</td><td>0.417</td><td>0.095</td></tr> <tr><td>35/48</td><td>0.295</td><td>0.065</td></tr> <tr><td>48/65</td><td>0.208</td><td>0.043</td></tr> <tr><td>65/-</td><td>0.208</td><td>0.005</td></tr> </tbody> </table>	Mesh no	Size range mm	Mass fraction	-	4.699	--	4/6	3.327	0.031	6/8	2.362	0.103	8/10	1.651	0.2	10/14	1.168	0.186	14/20	0.833	0.152	20/28	0.589	0.12	28/35	0.417	0.095	35/48	0.295	0.065	48/65	0.208	0.043	65/-	0.208	0.005		
Mesh no	Size range mm	Mass fraction																																						
-	4.699	--																																						
4/6	3.327	0.031																																						
6/8	2.362	0.103																																						
8/10	1.651	0.2																																						
10/14	1.168	0.186																																						
14/20	0.833	0.152																																						
20/28	0.589	0.12																																						
28/35	0.417	0.095																																						
35/48	0.295	0.065																																						
48/65	0.208	0.043																																						
65/-	0.208	0.005																																						
	c)	Highlight the salient features of Standard screens	<i>CO1</i>	<i>PO1</i>	4																																			
UNIT - II																																								
2	a)	Quartz is crushed using a Jaw crusher. Energy consumed by this crusher for no load condition is 0.5 kwh and the capacity is 1 ton per hour. If a feed of 10cm is crushed to lcm the energy consumed is 2.5 kwh. The same crusher is used to crush the same material from an initial size of 50cm to final size of 5cm. compare energy consumption under identical conditions using two different laws.	<i>CO2</i>	<i>PO2</i>	8																																			
	b)	Deduce an equation for angle of nip for a ball mill	<i>CO2</i>	<i>PO2</i>	6																																			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as

	c)	Explain the working of the ball mill with its construction and figure	CO2	PO2	6														
		UNIT - III																	
3	a)	Develop <i>Kozeny Carman</i> equation for filtration	CO3	PO3	10														
	b)	How important are the filter aids? Explain the working of plate and frame filter press.	CO3	PO3	10														
		OR																	
4	a)	Slurry is filtered in a filter of cross-sectional area 20 m^2 . The slurry consists of particles of density 2.26 gm/cc . The filter cake has a porosity of 32%. For constant pressure filtration at 3 kgf/cm^2 . <ul style="list-style-type: none"> i. What volume of slurry is required to build up a cake of 12.5 mm thick? ii. How long will it take to form the cake if the cloth resistance can be neglected? Data: Filtrate viscosity = 1.6 cP filtrate density = 1.05 gm/cc , solid concentration in the slurry = 4.8% by weight, Specific cake resistance = $1.14 \times 10^{11} \text{ m/Kg}$.	CO3	PO3	12														
	b)	Differentiate between types of filtration and explain the working of leaf filters with applications	CO3	PO3	8														
		UNIT - IV																	
5	a)	Apply the principle of batch sedimentation test and design a continuous thickener.	CO4	PO4	14														
	b)	Explain the salient features of cyclone separator with its types.	CO4	PO4	06														
		OR																	
6	a)	Calculate the minimum cross-sectional area of a continuous thickener required to handle 50 tons/h of dry solids to produce a thickened sludge of 530 kg solids per m^3 of water. The initial concentration of slurry is 240 kg/m^3 of slurry. The following data of settling velocity versus solid concentration was obtained in a batch settling test. <table border="1" style="margin-left: 20px;"> <tr> <td>V, m/hr</td> <td>0.1</td> <td>0.08</td> <td>0.06</td> <td>0.03</td> <td>0.02</td> <td>0.0</td> </tr> <tr> <td>C_L, kg/m³</td> <td>265</td> <td>285</td> <td>325</td> <td>415</td> <td>465</td> <td></td> </tr> </table>	V, m/hr	0.1	0.08	0.06	0.03	0.02	0.0	C _L , kg/m ³	265	285	325	415	465		CO4	PO4	12
V, m/hr	0.1	0.08	0.06	0.03	0.02	0.0													
C _L , kg/m ³	265	285	325	415	465														
	b)	Derive an equation for terminal settling velocity.	CO4	PO4	08														
		UNIT - V																	
7	a)	Elucidate the construction and working of solid mixer.	CO2	PO2	8														
	b)	With different mixing impeller arrangements explain their applications	CO2	PO2	12														
