

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH3DCMOP

Course: Mechanical Operations

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive an expression for screen effectiveness by material balance over a screen.					
		b)	Explain in detail, working of trommel with a neat sketch.					
			UNIT - II					
2	a)	Explain with neat sketch the construction and operation of gyratory crusher; also mention the advantages and disadvantages.			CO2	PO2	14	
	b)	To crush 150 tons per hour of limestone, if 80% of the feed passes 50 mm screen and 80% of the product passes a 3.125mm screen. What will be the power required? Work index of limestone = 12.74.						
			UNIT - III					
3	a)	Define fluidization. Explain the condition for fluidization with the help of pressure drop and bed height.			CO3	PO3	10	
	b)	A plate and frame filter press when filtering a sludge gave 8 m^3 of filtrate in 1800 sec and 11 m^3 of filtrate in 3600 sec when filtration was stopped. Calculate the washing time if 3 m^3 of wash water is used to wash the cake. Neglect the resistance of the filter cloth and assume a constant pressure filtration. Rate of washing = $\frac{1}{4}$ (final rate of filtration).						
			OR					
4	a)	Determine the settling velocity of steel ball 0.03 cm diameter in oil of specific gravity 0.82 and viscosity of 1 cP specific gravity of steel is 7.84. Justify your answer.			CO3	PO3	06	
	b)	Derive <i>Kozeny-Carman</i> equation for the flow of fluids through a bed of spherical solid particles. State all the assumptions used in its derivation.						

UNIT - IV																					
5	a)	Explain in detail the working of batch sedimentation test with neat sketch.																			
	b)	Illustrate on open and closed storage of solids.																			
OR																					
6	a)	Calculate the minimum cross-sectional area of a continuous thickener required to handle 50 tons/h of dry solids to produce a thickened sludge of 530 kg solids per m^3 of water. The initial concentration of slurry is 240 kg/ m^3 of slurry. The following data of settling velocity versus solid concentration was obtained in a batch settling test.																			
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>V, m/h</td><td>0.1</td><td>0.08</td><td>0.06</td><td>0.03</td><td>0.02</td><td>0.01</td></tr> <tr> <td>C_L, kg/ m^3</td><td>265</td><td>285</td><td>325</td><td>415</td><td>465</td><td>550</td></tr> </table>						V , m/h	0.1	0.08	0.06	0.03	0.02	0.01	C_L , kg/ m^3	265	285	325	415	465	550
V , m/h	0.1	0.08	0.06	0.03	0.02	0.01															
C_L , kg/ m^3	265	285	325	415	465	550															
	b)	Derive an equation for terminal settling velocity.																			
UNIT - V																					
7	a)	With the help of a neat sketch explain different types of impellers for agitation of liquids along with application.																			
	b)	Explain the principle of ribbon blender with its different industrial application.																			
