

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH3PCMOP / 22CH3PCMOP

Max Marks: 100

Course: Mechanical Operations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																																		
1	a)	How is the sphericity of a sphere calculated? Explain with an equation.	<i>CO1</i>	<i>PO1</i>	05																																		
	b)	A dolomite mixture having the following screen analysis is screened through a standard 100-mesh screen. Calculate the effectiveness of the screen and the mass ratios of overflow and underflow to feed.	<i>CO2</i>	<i>PO2</i>	07																																		
		Screen analysis																																					
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th rowspan="2" style="text-align: center; width: 15%;">Mesh</th> <th colspan="3" style="text-align: center;">Weight %</th> </tr> <tr> <th style="text-align: center;">Feed</th> <th style="text-align: center;">Oversize</th> <th style="text-align: center;">Undersize</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">35</td> <td style="text-align: center;">7.07</td> <td style="text-align: center;">13.67</td> <td style="text-align: center;">0.0</td> </tr> <tr> <td style="text-align: center;">48</td> <td style="text-align: center;">16.6</td> <td style="text-align: center;">32.09</td> <td style="text-align: center;">0.0</td> </tr> <tr> <td style="text-align: center;">65</td> <td style="text-align: center;">14.02</td> <td style="text-align: center;">27.12</td> <td style="text-align: center;">0.0</td> </tr> <tr> <td style="text-align: center;">100</td> <td style="text-align: center;">11.82</td> <td style="text-align: center;">20.7</td> <td style="text-align: center;">2.32</td> </tr> <tr> <td style="text-align: center;">150</td> <td style="text-align: center;">9.07</td> <td style="text-align: center;">4.35</td> <td style="text-align: center;">14.32</td> </tr> <tr> <td style="text-align: center;">200</td> <td style="text-align: center;">7.62</td> <td style="text-align: center;">2.07</td> <td style="text-align: center;">13.34</td> </tr> <tr> <td style="text-align: center;">-200</td> <td style="text-align: center;">33.8</td> <td style="text-align: center;">0.0</td> <td style="text-align: center;">70.02</td> </tr> </tbody> </table>	Mesh	Weight %			Feed	Oversize	Undersize	35	7.07	13.67	0.0	48	16.6	32.09	0.0	65	14.02	27.12	0.0	100	11.82	20.7	2.32	150	9.07	4.35	14.32	200	7.62	2.07	13.34	-200	33.8	0.0	70.02		
Mesh	Weight %																																						
	Feed	Oversize	Undersize																																				
35	7.07	13.67	0.0																																				
48	16.6	32.09	0.0																																				
65	14.02	27.12	0.0																																				
100	11.82	20.7	2.32																																				
150	9.07	4.35	14.32																																				
200	7.62	2.07	13.34																																				
-200	33.8	0.0	70.02																																				
	c)	What is screen effectiveness? Derive an equation to determine effectiveness of screens.	<i>CO2</i>	<i>PO2</i>	08																																		
		OR																																					
2	a)	With neat figures, explain the different screen motions.	<i>CO3</i>	<i>PO3</i>	08																																		
	b)	List the various types of diameters used to analyse the industrial powders. Explain volume-surface mean diameter, volume-mean diameter, and mass mean diameters with equations.	<i>CO2</i>	<i>PO2</i>	07																																		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Calculate the volume-surface mean diameter for the following particle size analysis.</p> <table border="1"> <thead> <tr> <th>S. No.</th><th>Size range (μm)</th><th>Mass (g)</th></tr> </thead> <tbody> <tr> <td>1.</td><td>$-704 + 352$</td><td>25.0</td></tr> <tr> <td>2.</td><td>$-352 + 176$</td><td>37.5</td></tr> <tr> <td>3.</td><td>$-176 + 88$</td><td>62.5</td></tr> <tr> <td>4.</td><td>$-88 + 44$</td><td>75.0</td></tr> <tr> <td>5.</td><td>Pan</td><td>50.0</td></tr> </tbody> </table>	S. No.	Size range (μm)	Mass (g)	1.	$-704 + 352$	25.0	2.	$-352 + 176$	37.5	3.	$-176 + 88$	62.5	4.	$-88 + 44$	75.0	5.	Pan	50.0	CO2	PO2	05
S. No.	Size range (μm)	Mass (g)																					
1.	$-704 + 352$	25.0																					
2.	$-352 + 176$	37.5																					
3.	$-176 + 88$	62.5																					
4.	$-88 + 44$	75.0																					
5.	Pan	50.0																					
		UNIT - II																					
3	a)	With a neat figure, explain the construction and working principle of a fluid-energy mill.	CO3	PO3	10																		
	b)	Differentiate between open- and closed-circuit grinding with figure.	CO1	PO1	06																		
	c)	What rotational speed, in rpm, would you recommend for a ball mill of 1300 mm in diameter charged with 55 mm balls?	CO2	PO2	04																		
		OR																					
4	a)	Mention the forces involved in crushing and grinding operation. State and explain the laws of crushing with equations.	CO1	PO1	10																		
	b)	What is the critical speed of a ball mill? Derive an equation for the critical speed of the ball mill.	CO2	PO2	10																		
		UNIT - III																					
5	a)	Consider a cylindrical column packed with Berl saddles as packing material. The water is allowed to flow into the column against gravity. The velocity of the water is maintained very low. The pressure of the water drops as it flows through the column. Derive an equation to estimate the pressure drop in the column, stating the relevant assumptions.	CO4	PO4	10																		
	b)	How are solids conveyed in industries? Explain with examples.	CO1	PO1	05																		
	c)	What is fluidization? Discuss the different types of fluidizations.	CO1	PO1	05																		
		OR																					
6	a)	With a neat figure, explain the construction and working principle of a rotary drum filter.	CO3	PO3	10																		
	b)	What are filter-aids? Discuss their desired properties.	CO1	PO1	05																		
	c)	Estimate the minimum fluidization velocity of a bed of particles fluidized by water. Given data: temperature = 25°C , $D_P = 120 \mu\text{m}$, $\rho_P = 2500 \text{ kg/m}^3$, $\varepsilon_m = 0.45$.	CO4	PO4	05																		

		UNIT - IV																																											
7	a)	How free settling is different from hindered settling?										CO1	PO1	06																															
	b)	A single batch settling test was carried out using limestone slurry. The interface between clear liquid and suspended solids was observed as a function of time and the results are tabulated. The test was conducted using 236 g of limestone per litre of slurry.										CO4	PO4	14																															
<table border="1"> <thead> <tr> <th>Time (h)</th><th>0</th><th>0.2</th><th>0.5</th><th>1.</th><th>1.7</th><th>3.0</th><th>4.75</th><th>10.2</th><th>12</th></tr> </thead> <tbody> <tr> <td>High of interface (cm)</td><td>3</td><td>32.</td><td>28.</td><td>21</td><td>14.</td><td>12.</td><td>11.5</td><td>9.8</td><td>8.</td></tr> <tr> <td></td><td>6</td><td>4</td><td>6</td><td></td><td>7</td><td>3</td><td>5</td><td></td><td>8</td></tr> </tbody> </table> <p>Design a thickener, if the slurry is fed at a rate of 50,000 kg of dry solids/ h to produce a thickened sludge of 550 g of limestone per litre. Given: density of limestone = 2560 kg/m³</p>																Time (h)	0	0.2	0.5	1.	1.7	3.0	4.75	10.2	12	High of interface (cm)	3	32.	28.	21	14.	12.	11.5	9.8	8.		6	4	6		7	3	5		8
Time (h)	0	0.2	0.5	1.	1.7	3.0	4.75	10.2	12																																				
High of interface (cm)	3	32.	28.	21	14.	12.	11.5	9.8	8.																																				
	6	4	6		7	3	5		8																																				
OR																																													
8	a)	How is thickener area determined? Discuss step by step procedure.										CO4	PO4	12																															
	b)	With a figure, explain the working of a cyclone separator. What is separation factor?										CO3	PO3	08																															
UNIT - V																																													
9	a)	Discuss the methods of prevention of swirling and vortex formation in agitated vessels.										CO4	PO4	10																															
	b)	Explain the following. i. Electrostatic separation ii. Jigging										CO3	PO3	10																															
OR																																													
10	a)	What is the purpose of agitation?										CO1	PO1	05																															
	b)	Discuss the types of impellers.										CO1	PO1	05																															
	c)	With a neat figure, explain the construction and working principle of a ribbon blender.										CO3	PO3	10																															
