

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 23CH3PCMOP / 22CH3PCMOP

Course: Mechanical Operations

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks																			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define Sphericity. Calculate the Sphericity of cube shaped particles.			CO1	PO1	04																			
		b)	Calculate the volume-surface mean diameter for the following particle sizes.	<table border="1"> <thead> <tr> <th>S. No</th> <th>Size range (μm)</th> <th>Mass (g)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>-704 + 352</td> <td>25</td> </tr> <tr> <td>2</td> <td>-352 + 176</td> <td>37.5</td> </tr> <tr> <td>3</td> <td>-176 + 88</td> <td>62.5</td> </tr> <tr> <td>4</td> <td>-88 + 44</td> <td>75</td> </tr> <tr> <td>5</td> <td>Pan</td> <td>50</td> </tr> </tbody> </table>			S. No	Size range (μm)	Mass (g)	1	-704 + 352	25	2	-352 + 176	37.5	3	-176 + 88	62.5	4	-88 + 44	75	5	Pan	50	CO2	PO2	08
	S. No	Size range (μm)	Mass (g)																								
1	-704 + 352	25																									
2	-352 + 176	37.5																									
3	-176 + 88	62.5																									
4	-88 + 44	75																									
5	Pan	50																									
	c)	How do you estimate the average particle size in the mixture of particles? Write the different correlations for calculating the average particle size.				CO1	PO1	08																			
			UNIT - II																								
2	a)	The particles of average feed size 2.5 mm are crushed to average product size of 0.5 mm at the rate of 15 ton/h. At this rate the crusher consumes 32 kW of power of which 2 kW are required for running the mill empty. What will be the power consumption of 10 ton/h of this product if further crushed to 0.1 mm size in the same mill? Apply Rittinger's Law.				CO3	PO3	10																			
	b)	Explain the construction and working principle of ball mill with a neat diagram.				CO3	PO3	10																			
			UNIT - III																								
3	a)	Derive the expression for Kozeny-Carman equation and state all the assumptions.				CO2	PO2	10																			

	b)	How do you analyze the plot ΔP versus superficial velocity, and explain the concept of minimum fluidization velocity from the plot?	CO2	PO2	05
	c)	Estimate the minimum fluidization velocity of fluidized particles by water. The data of the solid particles and the fluid are given below. Data: $D_p = 100 \mu\text{m}$, $\phi = 1$, density of particles = 2500 kg/m^3 , voidage of the bed = 0.4, viscosity of fluid = $0.9 \times 10^{-3} \text{ N.s/m}^2$, density of fluid = 1000 kg/m^3 .	CO2	PO2	05
		OR			
4	a)	Describe the working of rotary drum filter with the help of neat diagram?	CO3	PO3	10
	b)	Derive an expression to estimate specific cake resistance and filter medium resistance for the constant pressure drop maintained during the filtration.	CO4	PO4	10
		UNIT - IV			
5	a)	Establish the criterion settling regime conditions for the motion of spherical particles in the fluid?	CO4	PO4	10
	b)	Apply criterion settling regime concept and calculate the terminal velocity at which spherical particles of galena 0.2 cm in diameter will fall in water. Data: Specific gravity of galena = 7.5 Specific gravity of water = 1.0 Viscosity of water = 0.82 cP.	CO4	PO4	10
		OR			
6	a)	Explain the principle of cyclone separator with the help of neat diagram.	CO4	PO4	07
	b)	Calculate separation factor, if the diameter of cyclone separator is 0.6 m and the inlet tangential velocity is 18 m/s.	CO4	PO4	03
	c)	How do you analyze the usage of thickener for industrial applications? Design the thickener area.	CO3	PO3	10
		UNIT - V			
7	a)	Describe the different types of impellers used in the agitators with the help of neat sketches.	CO1	PO1	06
	b)	How do you prevent swirling motion during mixing? Explain with the help of sketches of impeller arrangements.	CO3	PO3	06
	c)	Explain the principle of electrostatic separation with the help of neat diagram.	CO3	PO3	08
