

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

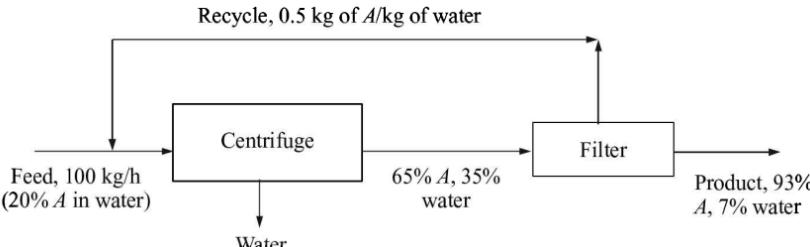
Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH3DCPPC

Course: Process Principles and Calculations

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>The equation for the heat transfer to or from a stream of gas flowing in turbulent motion is as follows:</p> $h = \frac{aC_p G^{0.8}}{D^{0.2}} = \frac{16.6 C_p G^{0.8}}{D^{0.2}}$ <p>Where, h = heat transfer coefficient $\left(\frac{kcal}{h \cdot m^2 \cdot ^\circ C}\right)$, C_p = Heat capacity $\left(\frac{kcal}{kg \cdot ^\circ C}\right)$, D = internal diameter of pipe (m), G = Mass velocity $\left(\frac{kg}{m^2 \cdot s}\right)$, and a = constant.</p> <p>It is desired to transform the equation into a new form</p> $h = \frac{aC_p G^{0.8}}{D^{0.2}}$ <p>where $h = \left(\frac{Btu}{h \cdot ft^2 \cdot ^\circ F}\right)$, $C_p = \left(\frac{Btu}{lb \cdot ^\circ F}\right)$, $D = ft$, and $G = \left(\frac{lb}{ft \cdot s}\right)$</p>	CO 1	PO 1	12
	b)	Define the followings: (i) Normality (ii) Molarity (iii) Dalton's law.			8
UNIT - II					
2	a)	<p>It is desired to make up 1000 kg of solution containing 35 % by weight of a substance 'A'. Two solutions are available, one containing 10 wt % percent 'A' and other containing 50 wt % of 'A'. How many kilograms of each solution will be required?</p>	CO 2	PO 2	10
	b)	<p>10000 kg/h of solution containing 20 % methanol is continuously fed to a distillation column. Distillate is found to contain 98 % methanol and waste solution from the column carries 1 % methanol. All percentages are by weight. Calculate (i) the mass flow rates of distillation and bottom product and (ii) the percent loss of methyl alcohol.</p>	CO 3	PO 2	10
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	3	a)	Explain bypass, recycle and purging operations in chemical processes along with diagram.	CO 2	PO 2	10
		b)	Final purification stage in the preparation of a pharmaceutical product A from natural sources requires centrifuging and continuous filtration as depicted in the figure given below:	CO 3	PO 2	10
			<p>Determine the flow rate of the recycle stream in kg/h.</p>			
UNIT - III						
4	a)	Define the followings: (i) Limiting reactants (ii) Fractional yield (iii) Selectivity	CO 4	PO 1	8	
	b)	Sulphur trioxide gas is obtained by the combustion of pyrites (FeS_2) according to the following reaction: $4\text{FeS}_2 + 15\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_3$ <p>The reaction is accompanied by the following side reaction:</p> $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ <p>Assume that 80 % (weight) of the pyrites charged reacts to give sulphur trioxide and 20 % reacts giving sulphur dioxide. a) How many kilograms of pyrites charged will give 100 kg of SO_3? b) How many kilograms of oxygen will be consumed in the reaction?</p>	CO 4	PO 3	12	
UNIT - IV						
5	a)	Define the following: (i) Fuel (ii) Calorific value (iii) Theoretical oxygen (iv) Complete combustion (v) Incomplete combustion.	CO 5	PO 3	10	
	b)	Calculate the net calorific value (NCV) at 298 K at a sample of fuel oil having C/H ratio 9.33 (by weight) and containing sulphur to the extent of 1.3 % by weight. <p>Data given: The GCV of the fuel oil at 298 K = 41785 kJ/kg Latent heat of water vapor at 298 K = 2442.5 kJ/kg</p>	CO 5	PO 3	10	
OR						
6	a)	Define the followings: (i) Ultimate analysis (ii) Proximate analysis	CO 5	PO 3	10	
	b)	A certain fuel is burnt in a furnace and its flue gas sample is carefully analyzed in a mercury filled Orsat apparatus. The flue gas was found to contain: $\text{CO}_2 = 13.5\%$, $\text{CO} = 2.1\%$, $\text{O}_2 = 6.5\%$ and $\text{N}_2 = 78.1\%$. Calculate the percentage of excess air used.	CO 5	PO 3	10	

UNIT - V					
7	a)	Calculate the enthalpy change for one mole of a gas when it is heated from 400 K to 1500 K at 1 atm pressure given that the mean specific heat of the gas at the reference temperature of 273 K are 35 kJ/kmol·K at 400 K and 50 kJ/kmol·K at 1500 K.	CO 6	PO 3	10
	b)	Define the followings: (a) Heat capacity (b) Heat of formation (c) Theoretical flame temperature (d) Heat of combustion	CO 6	PO 3	10

B.M.S.C.E. - ODD SEM 2023-24