

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

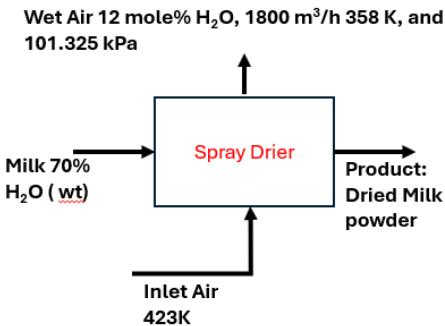
Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH3DCPPC


Max Marks: 100

Course: Process Principles and Calculations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain Amagat's law of additive volumes with its limitation.	<i>CO1</i>	<i>PO1</i>	04
	b)	98 grams of sulphuric acid (H_2SO_4) are dissolved in water to prepare one liter of solution. Calculate the normality and molarity of the solution	<i>CO2</i>	<i>PO1</i>	06
	c)	An empirical equation for calculating the inside heat transfer coefficient (h_i) for the turbulent flow of liquids in a pipe is given by.	<i>CO1</i>	<i>PO1</i>	10
Where,					
$h_i = \frac{0.023 G^{0.8} k^{0.67} C_p^{0.33}}{D^{0.2} \mu^{0.47}}$					
hi = heat transfer coefficient, (Btu/h ft ² °F)					
G = mass velocity of the liquid, (lb/h ft ²)					
K = thermal conductivity of the liquid, (BTU/h ft °F)					
Cp = heat capacity of the liquid, (BTU/lb °F)					
μ = Viscosity of the liquid, (lb / ft °F)					
D = inside diameter of the pipe, (ft)					
i. Verify, if the equation is dimensionally consistent					
ii. What will be the value of the constant given as 0.023 if all are converted to SI Units?					
UNIT - II					
2	a)	Discuss the material balance for distillation column operation for a binary system (A+B). Give the overall material balance and material balance of the component A.	<i>CO1</i>	<i>PO1</i>	05
	b)	A solution containing 53.8 g of $MgSO_4$ per 100g is cooled from 353K to 323K. During the process 6% of the water evaporates. How many kg of $MgSO_4 \cdot 7H_2O$ crystals are obtained per 100g of the original solution? At 323K the solution contains only 0.3 mass fraction of $MgSO_4$. Given:	<i>CO3</i>	<i>PO2</i>	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		Molecular weight of $MgSO_4$ = 120 and Molecular weight of $MgSO_4 \cdot 7H_2O$ = 246.			
	c)	A mixture of phenol and water forms two separate liquid phases, one rich in phenol and other rich in water, composition of layers is 70 % and 9 % (by weight) phenol, respectively. If 500 kg of phenol and 700 kg of water are mixed and layers allowed to separate, Calculate the weights of each layer.	CO4	PO2	08
		OR			
3	a)	Explain with block diagram, the bypass operations and recycle operation.	CO2	PO1	04
	b)	2000 kg of wet solids containing 70% solids by weight are fed to tray drier and dried using hot flue gas. The product finally obtained is found to contain 1% moisture by weight. Calculate (i) Amount of water (in kg) removed from wet solids (ii) Amount of product (in kg) of desired product obtained after drying.	CO3	PO2	08
	b)	A milk powder is produced in a spray drier which evaporates all the liquid water. The operation is shown below. Assuming inlet air contains no water, Calculate. i. Production rate of the powdered milk. ii. Molal flow rate of the inlet air.	CO4	PO2	08
		UNIT - III			
4	a)	Explain the terms percentage yield, percentage conversion, limiting reagent and stoichiometric ratio	CO1	PO1	08
	b)	A quantity of barite ore containing barium sulphate and infusible matter is fused with an excess of pure anhydrous soda ash. The reaction is as follows $BaSO_4 + Na_2CO_3 \rightarrow BaCO_3 + Na_2SO_4$ Upon analysis the fusion mass is found to contain, $BaSO_4$ = 11.3%; Na_2CO_3 = 20.35%; Na_2SO_4 = 27.7% and $BaCO_3$ is reminder and infusible mass. i) Estimate the percentage composition of the original barite ore ii) Estimate the percentage conversion of $BaSO_4$ to carbonate iii) Evaluate the percentage excess in which Na_2CO_3 was used above the amount theoretical required. Given: Molecular Weight: Ba=137.4; S=32; C=12; O=16; Na=23	CO4	PO2	12
		UNIT- IV			
5	a)	Determine the flue gas analysis and air fuel ratio by weight when a medium fuel oil having the following composition. C= 85.7%; H = 10.3%; S=3.4% ; O=0.5% and Ash 0.1% by weight This fuel oil is burnt with 30% excess air. Assume that complete combustion takes place.	CO5	PO3	10

	b)	<p>10kg of PbS and 3kg of Oxygen react to yield 6kg of Pb and 1 kg of PbO₂ according to the reaction.</p> $\text{PbS} + \text{O}_2 \rightarrow \text{Pb} + \text{SO}_2 \quad \text{and} \quad \text{PbS} + 2\text{O}_2 \rightarrow \text{PbO}_2 + \text{SO}_2$ <p>Calculate</p> <ol style="list-style-type: none"> Amount of PbS that does not react % excess of oxygen based on the amount of PbS that actually react. Amount of SO₂ produced Percentage Conversion of PbS to Pb. <p>Data: MW of PbS=239.2; Pb=207.2 ; SO₂=64; PbO₂=239.2 and O₂=32.</p>	CO5	PO3	10																				
		OR																							
6	a)	Explain in detail the analysis which can determine carbon, hydrogen, nitrogen and sulfur in a wide type of organic and inorganic samples, both solid and liquid.	CO2	PO1	08																				
	b)	<p>A producer gas contains 28 % CO, 3.5% CO₂, 0.5 %O₂, and 68% N₂. 100kg of this gas is burnt with 20% excess air. If the combustion is only 90% complete.</p> <p>Determine the following,</p> <ol style="list-style-type: none"> The Composition of the flue gas. The weight of the gases produced. 	CO5	PO3	12																				
		UNIT - V																							
7	a)	State Hess's Law of constant heat summation and explain with an example	CO4	PO1	04																				
	b)	Calculate the amount of heat to be supplied for raising temperature from 350K to 1500K of 1 kmole of oxygen using the Cp° (standard heat capacity) data given below $C_{p0_2}^{\circ} = 26.01 + 11.76 \times 10^{-3}T - 2.3426 \times 10^{-3}T^2 - 0.5623 \times 10^{-9}T^3, \text{ kJ/(kmol.K)}$	CO6	PO2	06																				
	c)	<p>Obtain and empirical equation for calculating the heat of reaction at any temperature T (in K) for the following reaction</p> $\text{CH}_4(g) + \text{C}_2\text{H}_4(g) \rightarrow \text{C}_3\text{H}_8(g) \quad \Delta H_R^{\circ} = -82.66 \text{ kJ/mol}$ <p>Heat Capacity data: $C_p^{\circ} = \alpha + \beta T + \gamma T^2 + \delta T^3, \frac{\text{kJ}}{\text{kmol K}}$</p> <table border="1"> <thead> <tr> <th>Component</th> <th>α</th> <th>$\beta \times 10^3$</th> <th>$\gamma \times 10^6$</th> <th>$\delta \times 10^9$</th> </tr> </thead> <tbody> <tr> <td>CH₄(g)</td> <td>19.2494</td> <td>52.1135</td> <td>11.973</td> <td>-11.3173</td> </tr> <tr> <td>C₂H₄(g)</td> <td>4.1261</td> <td>155.0213</td> <td>-81.5455</td> <td>16.9755</td> </tr> <tr> <td>C₃H₈ (g)</td> <td>-4.2227</td> <td>306.264</td> <td>-158.6316</td> <td>32.1455</td> </tr> </tbody> </table>	Component	α	$\beta \times 10^3$	$\gamma \times 10^6$	$\delta \times 10^9$	CH ₄ (g)	19.2494	52.1135	11.973	-11.3173	C ₂ H ₄ (g)	4.1261	155.0213	-81.5455	16.9755	C ₃ H ₈ (g)	-4.2227	306.264	-158.6316	32.1455	CO6	PO2	10
Component	α	$\beta \times 10^3$	$\gamma \times 10^6$	$\delta \times 10^9$																					
CH ₄ (g)	19.2494	52.1135	11.973	-11.3173																					
C ₂ H ₄ (g)	4.1261	155.0213	-81.5455	16.9755																					
C ₃ H ₈ (g)	-4.2227	306.264	-158.6316	32.1455																					
