

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH3DCPPC

Max Marks: 100

Course: Process Principles and Calculations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>The heat transfer equation is given by</p> $h = \frac{16.6C_p G^{0.8}}{D^{0.2}}$ <p>Convert the following and write the final expression.</p> <p>(i) Heat capacity (C_p), Btu/lb.$^{\circ}$F to kcal/Kg.$^{\circ}$C (ii) Diameter of pipe (D), inch to m (iii) Mass velocity (G), lb/ft2.s to kg/m2.s (iv) Heat transfer coefficient (h), Btu/hr.ft2.$^{\circ}$F to kcal/m2.hr.$^{\circ}$R</p>	1	1	10
	b)	<p>N_2O_4 decomposes to NO_2 at high temperatures. 20 g of N_2O_4 when heated to 373 K at 96 kPa, is found to occupy a volume of 0.0125 m3. Assume ideal gas law, calculate the percentage dissolution of N_2O_4 to NO_2.</p>	1	1	10
OR					
2	a)	<p>An orifice meter is used to measure the rate of flow of a fluid in pipes. The flowrate is related to the pressure drop by the following equation.</p> $u = c \sqrt{\frac{\Delta P}{\rho}}$ <p>Where u = fluid velocity, ΔP = pressure drop, ρ = density of the fluid and c = constant. What are the units of constant in the SI system.</p>	1	1	10
	b)	<p>A product gas from a reaction has the composition by weight. $Cl_2 = 67\%$, $Br_2 = 28\%$, $O_2 = 5\%$, using the ideal gas law calculate the following.</p>	1	1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		i) The composition of gas by volume ii) The density of the mixture in g/L at 25°C iii) Specific gravity of the mixture iv) Average molecular weight of the mixture			
		UNIT - II			
3	a)	With block diagram, write material balance equations for distillation and crystallization.	3	3	10
	b)	A gaseous mixture (F) consists of 16 mol% CS_2 and 84 mol% air is fed to the absorption column at a rate of 1000 lb-mol/hr. Most of the CS_2 input are absorbed by the liquid benzene (L) which is fed at the bottom of the column. 1% of benzene input are evaporated and out with the exit gas stream which consists of 96 mol% air, 2 mol% CS_2 and 2 mol% benzene. The product liquid stream (P) consists of benzene and CS_2 . Calculate the mole flow rates of G, L and P and the compositions.	3	3	10
		OR			
4	a)	The waste acid from a nitrating process contains 30% H_2SO_4 , 35% HNO_3 , and 35% H_2O by weight. The acid is to be concentrated to contain 39% H_2SO_4 and 42% HNO_3 by addition of concentrated H_2SO_4 containing 98% H_2SO_4 and concentrated nitric acid containing 72% HNO_3 (by weight). Calculate the quantities of three acids to be mixed to get 1000 kg of desired mixed acid.	3	3	10
	b)	With neat diagrams, write steady state material balance equations for evaporation and extraction.	2	2	10
		UNIT - III			
5	a)	Explain the following terms. (i) Percentage conversion (ii) Percentage Yield (iii) Percentage excess (iv) Limiting and excess reactants (v) Selectivity	2	2	10
	b)	In production of SO_3 , 50 kmol of SO_2 and 100 kmol of O_2 are fed to the reactor. The product stream is found to contain 40 kmol of SO_3 . Determine the percentage conversion of SO_2 .	4	3	10
		OR			
6	a)	In kiln, calcium oxide is formed by decomposing pure limestone CaCO_3 and the reaction given below. If this conversion is having 70%. Calculate the following. (i) The composition of the solid product withdrawn from the kiln.	4	3	08

		<p>(ii) What is the yield in kg of CO_2 produced per kg of limestone charged?</p> $\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2$			
	b)	<p>Sulphur trioxide gas is obtained by the combustion of pyrites (FeS_2) according to the following reaction.</p> $4\text{FeS}_2 + 15\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_3$ <p>The reaction is accompanied by the following side reaction.</p> $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ <p>Assume that 80% (weight) of the pyrites charged reacts to give sulfur trioxide and 20% reacts giving sulfur dioxide.</p> <p>(i) How many kg of pyrites charged to give 100 kg SO_3? (ii) How many kg of oxygen will be consumed in the reaction?</p>	4	3	12
		UNIT - IV			
7	a)	<p>Explain the following terms.</p> <p>(i) Theoretical oxygen (ii) Net oxygen content (iii) Gross calorific value of the fuel (iv) Net calorific value of fuel (v) Fixed carbon content</p>	5	3	10
	b)	<p>The gas obtained from the furnace fired with a hydrocarbon fuel analysis as $\text{CO}_2 = 10.2\%$, $\text{O}_2 = 7.9\%$, and $\text{N}_2 = 81.9\%$ by Orsat analysis. Calculate the percentage excess air.</p>	5	3	10
		OR			
8	a)	<p>A coal containing $\text{C} = 69.7\%$, $\text{H}_2 = 3.5\%$, $\text{S} = 1.3\%$, $\text{N}_2 = 1.7\%$, $\text{O}_2 = 7.7\%$, ash = 4.3%, and $\text{H}_2\text{O} = 11.8\%$ is burnt in the furnace. The combustion of dry gas has the following composition. $\text{CO}_2 = 13.9\%$, $\text{O}_2 = 4.5\%$, and $\text{N}_2 = 81.6\%$. Calculate</p> <p>(i) The percentage of excess air. (ii) The theoretical volume of air per 100 kg of coal.</p>	5	3	10
	b)	<p>Explain the proximate and ultimate analysis of fuels.</p>	5	3	10
		UNIT - V			
9	a)	<p>The heat capacity of CO_2 is given by the following relation.</p> $C_p = 26.54 + 42.45 \times 10^{-3}T - 14.298 \times 10^{-6}T^2$ <p>Where C_p is in $\text{kJ}/(\text{kmol.K})$ and T is in K</p> <p>Calculate the heat required to heat 1 kg of CO_2 from 300 K to 1000 K.</p>	6	3	10
	b)	<p>Calculate the heat of reaction (kJ) at 25°C for the reaction .</p> $\text{Na}_2\text{CO}_3 + \text{Fe}_2\text{O}_3 \rightarrow \text{Na}_2\text{OFe}_2\text{O}_3 + \text{CO}_2$	6	3	10

		Thermodynamic data:																		
		<table border="1"> <thead> <tr> <th>Component</th> <th>ΔH_f (kcal/gmol)</th> </tr> </thead> <tbody> <tr> <td>Na_2CO_3</td> <td>-269.8</td> </tr> <tr> <td>Fe_2O_3</td> <td>-195.2</td> </tr> <tr> <td>$Na_2OFe_2O_3$</td> <td>-337.3</td> </tr> <tr> <td>CO_2</td> <td>-24.05</td> </tr> </tbody> </table>	Component	ΔH_f (kcal/gmol)	Na_2CO_3	-269.8	Fe_2O_3	-195.2	$Na_2OFe_2O_3$	-337.3	CO_2	-24.05								
Component	ΔH_f (kcal/gmol)																			
Na_2CO_3	-269.8																			
Fe_2O_3	-195.2																			
$Na_2OFe_2O_3$	-337.3																			
CO_2	-24.05																			
		OR																		
10	a)	Explain adiabatic flame temperature and theoretical flame temperature. Write the step-by-step calculation procedure for adiabatic flame temperature.	6	3	10															
	b)	Calculate the enthalpy change between reactants and products at standard condition if 50 mole of CO_2 is produced according to the following reaction. $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O$ <p>Data:</p> <table border="1"> <thead> <tr> <th>S. No.</th> <th>Components</th> <th>ΔH_f (kJ/mol)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>$C_4H_{10}(g)$</td> <td>-30.04</td> </tr> <tr> <td>2</td> <td>$O_2(g)$</td> <td>0</td> </tr> <tr> <td>3</td> <td>$CO_2(g)$</td> <td>-93.98</td> </tr> <tr> <td>4</td> <td>H_2O</td> <td>-68.27</td> </tr> </tbody> </table>	S. No.	Components	ΔH_f (kJ/mol)	1	$C_4H_{10}(g)$	-30.04	2	$O_2(g)$	0	3	$CO_2(g)$	-93.98	4	H_2O	-68.27	6	3	10
S. No.	Components	ΔH_f (kJ/mol)																		
1	$C_4H_{10}(g)$	-30.04																		
2	$O_2(g)$	0																		
3	$CO_2(g)$	-93.98																		
4	H_2O	-68.27																		
