

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 23CH3PCPPC / 22CH3PCPPC

Course: Process Principles and Calculations

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are fundamental and derived quantities? Explain the system of units.			<i>CO1</i>	<i>PO1</i>	06
		b)	An aqueous solution of sodium chloride is prepared by dissolving 20 kg of NaCl in 80 kg of water. Calculate mole% composition of solution.			<i>CO2</i>	<i>PO1</i>	06
		c)	The gas analysis of the gas sample is given below (volume basis), CH ₄ =66%, CO ₂ =30%, NH ₃ =4%. Calculate (i) The average molecular weight of the gas (ii) The density of gas at 303k			<i>CO2</i>	<i>PO2</i>	08
			UNIT - II					
	2	a)	100 kg mol/h of 40 mole% of solution of ethylene dichloride in toluene is fed to middle of the distillation column. the distillate contain 95 mole% ethylene dichloride and the bottoms consists of 90 mole% Toluene. What is the flow rate of each stream?			<i>CO2</i>	<i>PO2</i>	10
		b)	Soyabean seeds oil is extracted with hexane in batch reactors. The flaked seeds contain 18.2% oil, 69.5% solid and 12.3% moisture. At the end of the process, cake is separated from hexane oil mixture; the cake analysis yields 0.8% oil, 88.2% solids and 11.0% moisture. Find the percentage recovery of oil. All percentages are by weight.			<i>CO2</i>	<i>PO2</i>	10
			OR					
	3	a)	A single effect evaporator is fed with 4000 kg/h of weak liquor containing 17% caustic by weight and is concentrated to get thick liquor containing 40% by weight caustic (NaOH). Calculate the amount of water evaporated and thick liquor obtained.			<i>CO3</i>	<i>PO2</i>	10
		b)	Explain (i) Bypass operation, (ii) Recycle operation, (iii) Purging operation.			<i>CO2</i>	<i>PO1</i>	10

UNIT - III					
4	a)	Calcium oxide is formed by decomposing limestone pure CaCO_3 . In kiln, the reaction goes to 70% completion. (i) Determine the composition of the solid product withdrawn from the kiln. (ii) Determine the yield in kg of CO_2 produced per kg of lime stone.	<i>CO4</i>	<i>PO2</i>	10
	b)	Sulphur trioxide gas is obtained by the combustion of pyrites (FeS_2) according to the following reaction: $4\text{FeS}_2 + 15\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_3$ The reaction is accompanied by the following side reaction: $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ Assume that 80 % (weight) of the pyrites charged reacts to give sulphur trioxide and 20 % reacts giving sulphur dioxide. a) How many kilograms of pyrites charged will give 100 kg of SO_3 ? b) How many kilograms of oxygen will be consumed in the reaction?	<i>CO3</i>	<i>PO3</i>	10
UNIT - IV					
5	a)	A natural gas consists of 75% CH_4 and 25% N_2 is burnt in furnace. The CO_2 is scrubbed out of the resulting products for use in elsewhere. The exit gases from the scrubber analyze 6% O_2 and 94% N_2 . Calculate the percentage of excess air used.	<i>CO5</i>	<i>PO3</i>	10
	b)	A fuel oil contains 85% C and 15% H_2 . It is burnt to form flue gas of following composition. $\text{CO}_2 = 13\%$, $\text{O}_2 = 3.2\%$ $\text{N}_2 = 83.8\%$ How many kgmol of flue gas are produced per kg of fuel oil?	<i>CO4</i>	<i>PO2</i>	10
OR					
6	a)	Explain ultimate and proximate analysis of coal.	<i>CO5</i>	<i>PO3</i>	06
	b)	Determine the flue gas analysis and air fuel ratio by weight when a medium fuel oil having the following composition: $\text{C}=85.7\%$, $\text{H}=10.3\%$, $\text{S}=3.4\%$, $\text{O}=0.5\%$, Ash = 0.1% (by weight) is burnt with 30% excess air. Assume that complete combustion takes place.	<i>CO5</i>	<i>PO3</i>	14
UNIT - V					
7	a)	Define the following (i) Heat capacity (ii) Heat of formation (iii) Heat of reaction (iv) Hess law	<i>CO1</i>	<i>PO1</i>	08
	b)	Calculate the heat required to rise the temperature of 1 kgmol of pure SO_2 from 300K to 1000K. heat capacity data for gaseous SO_2 is given by the following equation. $\text{C}_{\text{p,SO}_2} = 43.46 + 10.64 \times 10^{-3}\text{T} - 5.95 \times 10^{-5}\text{T}^{-2}$	<i>CO6</i>	<i>PO2</i>	12