

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## May 2023 Semester End Main Examinations

**Programme: B.E.**

**Semester: III**

**Branch: Chemical Engineering**

**Duration: 3 hrs.**

**Course Code: 22CH3PCPPC / 19CH3DCPPC**

**Max Marks: 100**

**Course: Process Principles and Calculations**

**Date: 22.05.2023**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

### UNIT - I

1 a) What is the meaning of dimensional consistent equation? Prove that  $N_{Re} = \rho DV/\mu$  is a dimensionless number where  $\rho$  is density,  $D$  is diameter,  $V$  is velocity and  $\mu$  is viscosity. **05**

b) When 2.5 g of oxalic acid is dissolved in 500 ml of water, what is the normality and molarity of the solution? **05**

c) The equation for the heat transfer to or from a stream of gas flowing in turbulent motion is as follows. **10**

$$h = \frac{\alpha C_p G^{0.8}}{D^{0.2}} = 16.6 \frac{C_p G^{0.8}}{D^{0.2}}$$

Where,

$C_p$  is heat capacity,  $\frac{Btu}{lb \text{ } ^\circ F}$

$D$  is the diameter of the pipe, inches

$G$  is mass velocity of the pipe,  $\frac{lb}{s \text{ } ft^2}$

$h$  is heat transfer coefficient,  $\frac{Btu}{h \text{ } ft^2 \text{ } ^\circ F}$

Convert the equation to

$$h' = \frac{\alpha' C_p' (G')^{0.8}}{(D')^{0.2}}$$

Where,

$C_p'$  is heat capacity,  $\frac{kcal}{kg \text{ } ^\circ C}$

$D'$  is the diameter of the pipe, cm

$G'$  is mass velocity of the pipe,  $\frac{kg}{s \text{ } m^2}$

$h'$  is heat transfer coefficient,  $\frac{kcal}{s \text{ } m^2 \text{ } ^\circ C}$

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

## UNIT - II

2 a) Draw the schematic representation of distillation column and represent material balance equation. **06**

b) A solution of ethylalcohol containing 8.6% alcohol is fed at the rate of 1000 kg/h to a continuous distillation column. The product is a solution (distillate) containing 95.5 % alcohol. The waste solution from the column contains 0.1% of alcohol. All percentages are by weight. Calculate (a) the mass flow rates of top and bottom products in kg/h and (b) the percentage of loss of alcohol **14**

## OR

3 a) A saturated solution of  $MgSO_4$  at 353 K ( $80^\circ C$ ) is cooled to 303 K ( $30^\circ C$ ) in a crystallizer. During cooling, 4% solution is lost by evaporation of water. Calculate the quantity of the original saturated solution to be fed to the crystallizer per 1000 kg crystals of  $MgSO_4 \cdot 7H_2O$ . Solubility of  $MgSO_4$  at 303 K and 353K are 40.8 and 64.2 kg per 100 kg of water, respectively. **10**

b) A mixture of acetic acid (47.5%) and water (52.5%) by weight is being separated by extraction. The operating temperature is  $24^\circ C$  and the solvent is used is pure isopropyl ether using the solvent ratio of 1:3 kg/kg feed. The final extraction composition of a solvent free basis is found to be 85% by wt. of acetic acid. The raffinate is found to contain 14% by wt. of acetic acid on solvent free basis. Calculate the percentage of acid of the original feed which remains un-extracted. **10**

## UNIT - III

4 a) Explain the following terms (i) Limiting reactant (ii) Excess reactant (iii) Conversion (iv) Yield **08**

b) Monochloroacetic acid (MCA) is manufactured in a semi-batch reactor by the action of glacial acetic acid with  $Cl_2$  gas at  $100^\circ C$  in the presence of  $PCl_3$  catalyst. MCA thus formed will further react with  $Cl_2$  to form dichloroacetic acid (DCA). To prevent the formation of DCA, excess acetic acid is used. A small-scale unit which produces 5000 kg/d of MCA, required 4536 kg/d of chlorine gas. Also 263 kg/d of DCA is separated in the crystallizer to get almost pure MCA product. Find the % conversion, % yield of MCA and selectivity. **12**

### **UNIT - IV**

5    a) Explain the ultimate and proximate analysis in combustion operations. **04**

     b) Explain the theoretical and excess oxygen in combustion operations. **04**

     c) The coal sample from Godavari Colliery has the following composition C- 50.22%, H<sub>2</sub>-2.79%, sulfur-0.37% and oxygen - 18.04 % by weight and rest ash. Calculate **12**

         (a) Theoretical oxygen requirement per unit weight of coal burnt.

         (b) Theoretical dry air requirement per unit weight of coal burnt.

### **OR**

6    The Orsat analysis of the flue gases from a boiler chimney gives CO<sub>2</sub>: 11.4%, O<sub>2</sub>:4.2% and N<sub>2</sub>:84.4% (mol%). Assuming that complete combustion has taken place. Calculate (a) the % excess air and (b) C:H ratio in the fuel. **20**

### **UNIT - V**

7    a) Explain the terms (i) Heat capacity (ii) Enthalpy (iii) Heat of formation (iv) Heat of reaction and (v) Heat of combustion **10**

     b) Toluene is heated from 290 K to 350 K at the rate of 0.25 kg/s. Calculate the heat required to be added to the toluene using the constants given below for the calculations of C<sub>p</sub> (J/kmol K). **10**

$$a = 1.8083; b \times 10^3 = 812.223 \text{ and } c \times 10^6 = -1512.67$$

\*\*\*\*\*