

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH3PCPPC / 22CH3PCPPC

Max Marks: 100

Course: Process Principles and calculations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define the following	i. Normality ii. Molarity iii. Molality iv. ppm		CO1	PO1	08
		b)	Prove that Pressure % = Volume % = Mole %.			CO2	PO1	06
		c)	A gas mixture contains 0.274 kmol of HCl, 0.337 kmol of N ₂ and 0.089 kmol of O ₂ . Calculate:	i. Average molecular weight of gas ii. Volume occupied by this mixture at 405.3 kPa and 303K.		CO1	PO1	06
			OR					
	2	a)	A mixture of two gases, A and B, is kept in a 10 L container at 1 atm and 300 K. Gas A has a molar mass of 32 g/mol, and gas B has a molar mass of 28 g/mol. The mixture contains 1.5 moles of gas A and 2.5 moles of gas B. Calculate the average molar mass of the gas mixture and its density.			CO1	PO1	06
		b)	Define Amagat's and Dalton's Law. Write its equations.			CO2	PO1	06
		c)	A 10 L container is filled with a mixture of two gases, A and B, at 300 K and 1 atm. The partial pressure of gas A is 0.6 atm and that of gas B is 0.4 atm. The molar volume of an ideal gas at these conditions is 22.4 L/mol. Calculate:	i. The number of moles of each gas in the mixture. ii. The mole fraction of each gas.		CO1	PO1	08
			UNIT - II					
3	a)	Define and write the basic material balance and component balance for the unit operations	i. Distillation			CO3	PO1	08

		ii. Evaporation iii. Extraction iv. Absorption			
	b)	A single effect evaporator is fed with 10000 kg / h of weak liquor containing 15 % caustic by weight and is concentrated to get thick liquor containing 40 % by weight caustic. Calculate: i. kg/h of water evaporated and ii. kg/h of thick liquor	CO4	PO1	12
		OR			
4	a)	The waste acid from a nitrating process contains 30 % H_2SO_4 , 35 % HNO_3 and 35 % H_2O w/w. the acid is to be concentrated to contain 39 % H_2SO_4 and 42% HNO_3 by addition of concentrated sulfuric acid containing 98% H_2SO_4 and concentrated Nitric acid containing 72 % HNO_3 . Calculate the quantities of three acids to be mixed to get 1000 kg of desired mixed acid.	CO3	PO1	10
	b)	The ground nut seeds containing 45% oil and 45% solids are fed to expeller. The cake coming out of expeller is found to contain 80% solids and 5% oil, find the percentage recovery of oil.	CO4	PO1	10
		UNIT - III			
5	a)	The carbon monoxide is reacted with hydrogen to produce methanol. Calculate: i. The stoichiometric ratio of H_2 to CO ii. kmol of CH_3OH produced per kmol CO reacted iii. The weight ratio of CO to H_2 if both are fed to reactor in stoichiometric ratio of CO to H_2 if both are fed to reactor in stoichiometric proportions iv. The quantity of CO required to produce 1000 kg CH_3OH	CO4	PO2	14
	b)	Define the following (i) limiting reactant (ii) excess reactant	CO4	PO2	06
		OR			
6	a)	The producer gas made from the coke has the following composition by volume: CO - 28%, CO_2 - 3.5%, O_2 - 0.5% and N_2 - 68%. The gas is burnt with such a quantity of air that the oxygen from air is 20% in excess of the net oxygen required for complete combustion. If the combustion is 98% complete, calculate the weight of the gaseous product formed per 100 kg of the gas burned.	CO4	PO2	14
	b)	Define the following (i) fractional yield (ii) Percentage yield (iii) selectivity	CO4	PO2	06
		UNIT - IV			
7	a)	Classify the types of fuel. Explain with examples.	CO4	PO2	06
	c)	Coal containing C - 68.2%, H – 4.5%, S – 0.7%, N – 1.7%, O - 7.8%, Ash – 4.4%, and water - 12.7%, is burnt in a furnace. The product of combustion dry gas, analyses CO_2 – 14.4%, O_2 – 4.6% and rest N_2 . Calculate:	CO4	PO2	16

		i. The theoretical volume of air used for the complete combustion of 100 kg of coal ii. The percentage of excess air used.																							
		OR																							
8	a)	Write a note on calorific value of fuels.	CO1	PO1	06																				
	b)	Hydrogen (H_2) is combusted with 25% excess air. The balanced equation for the combustion of hydrogen is: $2H_2 + O_2 \rightarrow 2H_2O$ Calculate the actual air required for the combustion of 2 moles of hydrogen.	CO4	PO2	08																				
	c)	Explain ultimate and proximate analysis of coal.	CO1	PO1	06																				
		UNIT - V																							
9	a)	Explain adiabatic flame temperature and theoretical flame temperature.	CO1	PO1	06																				
	b)	Obtain an emperical equation for calculating the heat of reaction at any temperature T (in K) for the reaction: $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$ Data : $\Delta H_R^\circ = -90.41\text{KJ/mol}$ $C_{p0} = a + bT + cT^2 + dT^3, \text{ kJ/(kmol.K)}$ <table border="1"> <thead> <tr> <th>Component</th> <th>a</th> <th>$b \times 10^3$</th> <th>$c \times 10^6$</th> <th>$d \times 10^9$</th> </tr> </thead> <tbody> <tr> <td>CO (g)</td> <td>29.0277</td> <td>-2.8165</td> <td>11.6437</td> <td>-4.7063</td> </tr> <tr> <td>H_2 (g)</td> <td>28.6105</td> <td>1.0194</td> <td>-0.1476</td> <td>0.769</td> </tr> <tr> <td>$CH_3OH(g)$</td> <td>21.137</td> <td>70.843</td> <td>25.86</td> <td>-28.479</td> </tr> </tbody> </table>	Component	a	$b \times 10^3$	$c \times 10^6$	$d \times 10^9$	CO (g)	29.0277	-2.8165	11.6437	-4.7063	H_2 (g)	28.6105	1.0194	-0.1476	0.769	$CH_3OH(g)$	21.137	70.843	25.86	-28.479	CO6	PO2	14
Component	a	$b \times 10^3$	$c \times 10^6$	$d \times 10^9$																					
CO (g)	29.0277	-2.8165	11.6437	-4.7063																					
H_2 (g)	28.6105	1.0194	-0.1476	0.769																					
$CH_3OH(g)$	21.137	70.843	25.86	-28.479																					
		OR																							
10	a)	Explain the Hess's law of heat summation.	CO1	PO1	04																				
	b)	Define the following (i) Heat of reaction (ii) Heat of formation (iii) Heat of combustion	CO1	PO1	06																				
	c)	Calculate the heat of formation of phenol crystals at 298.15K From its elements using following data. Standard heat of formation $CO_2(g) = -393.51\text{ kJ/mol}$ Standard heat of formation $H_2O(l) = -285.83\text{ kJ/mol}$ Heat of combustion of phenol crystals at 298.15 K =-3053.25 kJ/mol	CO6	PO2	10																				
