

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH3PCTD1

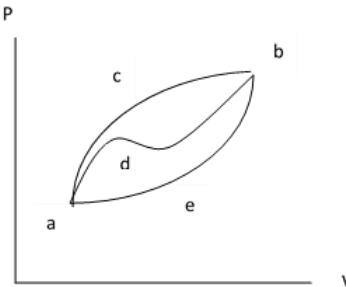
Course: Process Engineering Thermodynamics-I

Semester: III

Duration: 3 hrs.

Max Marks: 100

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.
3. Use of steam tables is permitted.

UNIT - I

1	a) Define state and path functions with example. 06
	b) A manometer fluid of specific gravity 2.95 is used to measure a pressure of 1.15 bar at a location where barometer pressure of 760 mm Hg. What height will the manometer fluid indicate? 07
	c) Differentiate between thermodynamic process and cycle. What are the different types of thermodynamic processes? 07

UNIT - II

2	a) Explain Joule's Paddle wheel experiment and prove that $\oint dQ = \oint dW$ over a reversible cycle. 10
	b) Consider the following P-V diagram. 10

When a system is taken from state a to state b along the path acb, 100 J of heat flows into the system and the system does 40 J of work.

- How much heat flows into the system along the path aeb if work done by the system is 20 J?
- The system returns from b along the path bda to a. If work done on the system is 30 J, does the system absorb or liberate heat? How much?

OR

3	a) Calculate the internal energy and enthalpy changes that occur when air is changed from initial state of 277 K and 10 bar where its molar volume is 2.28 m ³ /kmol to a final state of 333 K and 1 bar. Assume for air that PV/T is constant and C _V = 21 and C _P = 29.3 kJ/kmol-K. 10
---	--

b) Derive an expression for first law of thermodynamic applied to steady state flow system. Reduce the equation to $\Delta H = dQ$. 10

UNIT - III

4 a) Explain PT diagram for a pure material. 06

b) How do you explain the physical significance of the virial coefficients? 06

c) Calculate the volume occupied by one mole of oxygen at 300 K and 100 bar using 08

- i. The ideal gas laws
- ii. The van der Waals equation.

Take $a = 0.1378 \text{ N m}^4/\text{mol}^2$ and $b = 3.18 \times 10^{-5} \text{ m}^3/\text{mol}$.

OR

5 a) Show that $dW = RT \ln \frac{V_2}{V_1}$ for an isothermal process. 06

b) One mole of an ideal gas expands from $P_1 = 8 \text{ bar}$, $T_1 = 600 \text{ K}$ to $P_2 = 1 \text{ bar}$ by the following processes 10

- a) Constant volume process
- b) Constant temperature process
- c) Adiabatic process

Assume $CP = (7/2)R$ and $CV = (5/2)R$ and mechanically reversible processes. Calculate W , Q , ΔU and ΔH for each of the processes and sketch the process on PV diagram.

c) What is polytropic process? 04

UNIT - IV

6 a) Prove that $dW = (RT_1 - RT_2)/(\gamma - 1)$ for an adiabatic process. 10

b) A stationary mass of gas is compressed from initial state of 0.3 m^3 and 0.105 MPa to final state of 0.15 m^3 and 0.105 MPa . There is a transfer of 37.6 kJ of heat from the gas during the process. How much is the change in internal energy of the gas? 10

UNIT - V

7 a) 10 kg of water at 375 K is mixed adiabatically with 30 kg of water at 275 K . What is the change in entropy? C_P of water = 4.2 kJ/kg 04

b) Show that $\Delta S = R \ln \frac{V_2}{V_1}$ 04

c) Explain concept of entropy and derive Clausius inequality. 12
