

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH3PCTD1

Course: Process Engineering Thermodynamics-I

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 08.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of steam tables is permitted.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I

1	a) Explain the significance of heat and work. Justify that both are path functions.	10
	b) State and explain the phase rule with examples.	05
	c) Differentiate between thermodynamic process and cycle. What are the different types of thermodynamic processes?	05

UNIT - II

2	a) Justify $\oint dQ = \oint dW$ in a reversible cycle using Joule's paddle wheel experiment.	10
	b) Water at 368 K is pumped from a storage tank at the rate of 6.94 kg/s. The motor for the pump supplies work at the rate of 2 hp. The water passes through a heat exchanger, where it gives up heat at the rate of 42,000 J/min and is delivered to a second storage tank at the elevation of 20 m from the first storage tank. What is the temperature of the water delivered to the second tank. Assume enthalpy of water at 0°C is zero and specific heat of water is constant at 4.2 kJ/kg K.	10

OR

3	a) Define enthalpy. Explain the working principle of calorimeter.	08
	b) Explain reversible processes with examples.	05
	c) Calculate the change in internal energy and enthalpy for 1 mol water, as it is vaporized at the constant temperature of 373 K and constant pressure of 101.3 kPa. The specific volumes of liquid and vapour at these conditions are 1.04×10^{-3} and $1.675 \text{ m}^3/\text{kmol}$ respectively; 1030 kJ of heat is added to water for this change.	07

UNIT - III

4 a) Draw and explain the pressure versus temperature diagram for a pure fluid. **05**

b) Calculate the compressibility factor and molar volume of gaseous methane at 300 K and 600 bar by using the following equations. Experimental values of Van der Walls constants are,
 $a = 0.2285 \text{ N m}^4/\text{mol}^2$; and $b = 4.25 \times 10^{-5} \text{ m}^3/\text{mol}$.

i. Ideal gas equation ii. van der Waals equation

c) What is the significance of Virial equation? Write the Virial equation terminated after second and third coefficients. **05**

UNIT - IV

5 a) Derive equations for the calculation of internal energy change, heat and work interactions during isothermal, adiabatic, isobaric and isochoric reversible processes. **10**

b) 1 kmol of air at 389 K and 8 bar pressure undergoes the following reversible processes.

- It is expanded reversibly under isothermal conditions.
- It is cooled to 279 K at constant volume to 2 bar pressure.

Assume air to be an ideal gas with specific heat capacity equals to 29.3 J/mol K, calculate the work, heat transferred, changes in internal energy and enthalpies.

OR

6 a) What is polytropic process? **04**

b) Prove that $dW = (RT_1 - RT_2)/(\gamma - 1)$ for an adiabatic process. **08**

c) 1 kmol of a gas for which $PV = nRT$ is originally at 305 K and 1 bar. It is then heated at constant pressure to a temperature of 400 K and compressed isothermally to a volume equal to its initial volume. Assume that $C_p = 30 \text{ kJ/kmol K}$. For each of the processes, determine the conditions at the intermediate state and change in internal energy, enthalpy and work and heat interactions.

UNIT - V

7 a) State and prove the Carnot's second theorem. **10**

b) A 40 kg steel casting at 723 K is cooled in 150 kg oil in an insulated tank at 298 K and Calculate the final equilibrium temperature, change in entropy of the casting and the oil. What is the entropy generated? The heat capacity of oil is 2.5 kJ/kg K and that of the steel is 0.5 kJ/kg. **10**
