

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH4PCANI

Course: Analytical Instruments

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the classification of instrumental methods used in analytical chemistry and discuss their significance in qualitative and quantitative analysis.					
		b)	Differentiate between precision and accuracy. Elucidate the external standard calibration method used in analytical instruments.			<i>CO 2</i>	<i>PO 1</i>	10
			UNIT - II					
	2	a)	Discuss the origin of light absorptions in the UV regions. Explain the electronic transitions that occur in organic compounds leading to UV absorption.			<i>CO1</i>	<i>PO1</i>	10
		b)	Explain the fundamental principle of Beer's law in UV spectroscopy and illustrate its deviation under certain conditions.			<i>CO2</i>	<i>PO1</i>	10
			UNIT - III					
	3	a)	State the working principle of UV spectroscopy with a neat sketch by illustrating and labelling the instrumentation involved.			<i>CO2</i>	<i>PO 1</i>	10
		b)	Discuss the applications of UV and IR spectroscopy in various chemical analysis.			<i>CO4</i>	<i>PO 5</i>	10
			UNIT - IV					
	4	a)	Explain the principle of thermogravimetric analysis and differential scanning calorimeter with a neat sketch.			<i>CO1</i>	<i>PO1</i>	10

	b)	Elucidate the instrumentation of bomb calorimeter highlighting its components and working principles.	CO2	PO1	10
		OR			
5	a)	Describe the principle of gas chromatography, including the carrier gas, stationary phase, and the separation process.	CO2	PO1	10
	b)	Discuss the different types of detectors used in gas chromatography. Explain the working mechanism and detection capability of flame ionization detector.	CO3	PO2	10
		UNIT - V			
6	a)	Discuss the characteristic and working of electron capture detector used in gas chromatography.	CO4	PO5	10
	b)	Explain the procedure for performing qualitative analysis using gas chromatography.	CO5	PO12	10
		OR			
7	a)	Illustrate the principle of High-Performance Liquid Chromatography (HPLC) and its instrumentation parts with neat sketch.	CO5	PO12	10
	b)	List the different types of columns used in HPCL? Explain the working function of normal phase column used in HPLC.	CO2	PO1	10
