

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 23CH4ESANI

Course: Analytical Instruments

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Differentiate between qualitative and quantitative analysis. A farmer brought several varieties of potatoes and wants to test for the presence of iodine qualitatively. Describe how he can identify iodine using classical methods.	CO 1	PO 1	10
	b)	Explain the external standard calibration method in analytical chemistry. Discuss its advantages and limitations	CO 2	PO 2	10
UNIT - II					
2	a)	Explain the origins of light absorptions in UV-vis and IR Spectroscopy.	CO 1	PO 1	10
	b)	The absorbance of a Cu sulphate solution containing 0.5 mg Cu/ml was reported as 0.35 at 440 nm. What will be the absorbance if the solution is diluted to twice its original volume? Assume that a 1 cm cuvette was used.	CO 1	PO 1	05
	c)	Discuss the deviations in Beer's Law.	CO 1	PO 1	05
OR					
3	a)	Draw a neat labelled instrumentation diagram for UV-vis and FTIR spectrometry.	CO 1	PO 1	10
	b)	List out the different types of detectors used in IR spectroscopy and explain any one in detail with a neat sketch.	CO 2	PO 2	10
UNIT - III					
4	a)	Give a brief about the information that can be obtained about a sample using Thermogravimetric analysis (TGA). Interpret the following different types of curves obtained under TGA:	CO 1	PO 1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Write the working principles of Bomb calorimeter and Power compensated differential calorimeter along with their rough sketches.	CO 1	PO 1	10
		UNIT - IV			
5	a)	Explain the principle on which GC works Draw the neat labelled instrumentation diagram of Gas Chromatography (GC) equipment.	CO 1	PO 1	10
	b)	Describe the working of electron capture detector (ECD) used in gas chromatography with a neat sketch.	CO 1	PO 1	10
		OR			
6	a)	Discuss the working of split and split-less injection methods used in Gas Chromatography (GC).	CO 2	PO 2	10
	b)	Explain the working of Flame ionization detector (FID) used in gas chromatography with a neat sketch.	CO 2	PO 2	10
		UNIT - V			
7	a)	Discuss the criteria for selecting mobile phase in High pressure liquid chromatography (HPLC). Draw a neat labelled diagram of HPLC system.	CO 3	PO 2	10
	b)	Enlist the different types of columns used in High pressure liquid chromatography (HPLC). Explain the any two columns in detail.	CO3	PO 2	10
