

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH4PCHTR

Course: Process Heat Transfer

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of steam tables is allowed.

UNIT - I			CO	PO	Marks
1	a)	Derive an equation for steady state heat transfer through a composite wall, without heat generation and with constant thermal conductivity.	<i>CO 2</i>	<i>PO 2</i>	08
	b)	A furnace is constructed with thickness of 225 mm fire brick 120 mm of insulating brick and 225 mm of building brick. The inside temperature is 1200 K and outside temperature is 330 K. Find the heat loss per unit area and the temperature at the wall interface. Data: Thermal conductivity for fire brick is 1.4 W/mK Thermal conductivity for insulating brick is 0.2 W/mK Thermal conductivity for building brick is 0.7 W/mK	<i>CO 3</i>	<i>PO 2</i>	08
	c)	It is necessary to insulate a flat surface so that the rate of heat loss per unit area of the surface does not exceed 450 W/m^2 . The temperature difference across the insulating layer is 400 K. Evaluate the thickness of insulation if i. The insulation is made up of asbestos cement having thermal conductivity of 0.11 W/mK. ii. The insulation is made up of fire clay having a thermal conductivity of 0.84 W/mK.	<i>CO 3</i>	<i>PO 2</i>	04
UNIT - II					
2	a)	Derive an expression for temperature profile and efficiency of an infinitely long rectangular fin.	<i>CO 4</i>	<i>PO 2</i>	12
	b)	One thousand spheres made of copper of diameter 3 mm are annealed in the annealing furnace. Initial temperature of the sphere is 20°C. Temperature of annealing furnace is 400°C. Given data: $h = 30 \text{ kcal/m}^2 \text{ h}^\circ\text{C}$; $C_p = 0.8 \text{ kcal/kg }^\circ\text{C}$. Compute the time required for the spheres to reach a temperature of 300°C.	<i>CO 3</i>	<i>PO 2</i>	08
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	3	a)	Drive an equation for critical radius of insulation for spherical vessel insulated with a material of thermal conductivity K, state all assumptions	CO 4	PO 2	10
		b)	A steam pipe, 40 mm outside diameter is to be insulated by two layers of insulation, each 20 mm thick. The material A-1 has conductivity K, and material A-2 has conductivity 3 K. Assuming that the inner and outer surface temperatures of the composite insulation to be fixed, find which arrangement would give less heat loss rate, A-1 near pipe surface and A-2 as the outer layer or vice versa also calculate the percentage reduction in heat loss.	CO5	PO 3	10
		UNIT - III				
4	a)	Derive an expression for overall heat transfer coefficient by stating all assumptions. Define fouling and write expression for overall heat transfer coefficient including fouling.	CO5	PO 3	10	
	b)	Illustrate briefly the following i. Pool boiling ii. Dropwise and film wise condensation	CO5	PO 3	10	
		OR				
5	a)	Drive the expression of logarithmic mean temperature for counter flow heat exchanger, stating all the assumptions.	CO 5	PO 3	08	
	b)	Derive Nusselt's equation for film wise condensation stating all the assumptions.	CO 5	PO 3	12	
		UNIT - IV				
6	a)	Illustrate the working of natural circulation evaporators with neat labelled diagrams.	CO 5	PO 3	10	
	b)	An evaporator is operating at atmospheric pressure. It is desired to concentrate feed from 5% solute to 20% solute by weight at a rate of 5000 kg/h. Dry saturated steam at a pressure corresponding to saturation temperature of 399 K is used. The feed is at 290 K and boiling point elevation is 5 K. Overall heat transfer coefficient is 2350 W/m ² K. Compute the capacity, economy of evaporator and area of heat transfer to be provided. Data: Treating solution to be pure water and neglecting Boiling point. Latent heat of condensation of steam at 399 K is 2185 kJ/kg and latent heat of evaporation of water at atmospheric pressure and 373 K is 2257 kJ/kg. Specific heat of feed is 4.187 kJ/kgK.	CO 5	PO 3	10	
		UNIT - V				
7	a)	Briefly elaborate on i. Wien's displacement law ii. Plank's law iii. Kirchhoff's law of radiation	CO 1	PO 1	10	
	b)	Two large plane surface A and B situated at 2.5 mm apart in air. Surface A has an emissivity of 0.16 and it is at temperature of 400 K. Surface B has an emissivity of 0.08 and surface temperature is 350 K. Compute the heat transfer rate by radiation between two surfaces. Given: $\sigma = 5.62 \times 10^{-8} \text{ W/m}^2\text{K}^4$	CO 3	PO 2	10	