

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH4PCHTR / 22CH4PCHTR

Max Marks: 100

Course: Process Heat Transfer

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of steam table is permitted.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the governing equations of the three modes of heat transfer: conduction, convection, and radiation.	CO1	PO1	06
		b)	A composite wall consists of two layers, A and B. Layer A has a thickness of 0.1 m and thermal conductivity of 1.5 W/m K. Layer B has a thickness of 0.2 m and thermal conductivity of 0.5 W/m K. The temperature difference across the composite wall is 40°C. Calculate the heat transfer rate per unit area.	CO 3	PO2	04
		c)	A furnace wall is made up of three layers, one is fire brick, one is insulating layer and one is red brick. The inner and outer surfaces temperature is at 870°C and 40°C respectively. The conductive heat transfer coefficients of the layers are 1.163, 0.14 and 0.87 W/m °C and the thicknesses are 22 cm, 7.5 cm and 11 cm, respectively Find the rat of heat loss per sq. meter and the interface surfaces.	CO3	PO3	10
		OR				
	2	a)	Derive an equation for the heat loss through a composite wall, stating all assumptions.	CO 1	PO 2	10
		b)	Derive an equation for steady state heat transfer through a hollow cylinder.	CO 1	PO2	10
			UNIT - II			
	3	a)	Define critical thickness of insulation. Derive an equation to find the critical radius of insulation for a sphere.	CO4	PO2	10
		b)	Calculate the critical radius of insulation for asbestos ($k = 0.17$ W/m·°C) surrounding a pipe and exposed to room air at (20°C) with ($h = 3.0$ W/m ² °C). Calculate the heat loss from a (200°C), 5 cm diameter pipe when covered with the critical radius of insulation and without insulation.	CO 4	PO2	10
		OR				
	4	a)	A rectangular fin is attached to a base plate which is at a temperature T_0 . The surrounding air temperature is T_∞ . Derive an equation to determine the temperature profile when the fin is very long, and the temperature at the end of the fin is essentially that of the surrounding fluid.	CO4	PO2	12

	b)	A very long rod 5 mm in diameter has one end maintained at 100°C. The surface of the rod is exposed to ambient air at 25 °C with a convection heat transfer coefficient of (100 W/m ² .K). Determine the temperature distributions along rods constructed from pure copper thermal conductivity is $k= 398$ W/m.K. What are the corresponding heat losses from the rod?	CO4	PO2	08
		UNIT – III			
5	a)	What is overall heat transfer coefficient? Derive the expression of the overall heat transfer coefficient for the case of fluids flowing inside and outside a tube.	CO5	PO3	10
	b)	In a parallel flow double pipe heat exchanger water flows through the inner pipe and is heated from 20°C to 70°C. oil flowing through the annulus is cooled from 200 °C to 100 °C. It is desired to cool the oil to a lower exit temperature by increasing the length of the heat exchanger. Determine the minimum temperature to which the oil may be cooled.	CO5	PO3	10
		OR			
6	a)	Illustrate and briefly explain the different regimes of boiling heat transfer curve for water.	CO5	PO3	10
	b)	An oil cooler for a lubrication system has to cool 1000 kg/h of oil ($C_p=2.09$ kJ/kg°C from 80 to 40°C by using a cooling water flow of 1000 kg/h at 30°C. Give your choice for a parallel flow or counter flow heat exchanger with reason. Calculate the surface area of heat exchanger, if the overall heat transfer coefficient is 24 W/m ² °C and Take C_p of water is 4.18kJ/kg °C.	CO5	PO3	10
		UNIT – IV			
7	a)	A single effect evaporator is used to concentrate 9070 kg/h of 20% caustic soda solution to 50% solids. The gauge pressure of steam is 1.37atm. The absolute pressure in the vapor space is 100 mm Hg. There is a BPE of 22.78 °C. The overall heat transfer coefficient is estimated to be 1400 W/m ² °C and the feed temperature is 37.8 °C. Calculate the (a) Amount of steam consumed (b) Economy (c) Heating surface required. Data: Enthalpy of feed at 37.8 °C = 127.9245 kJ/kg, Enthalpy of thick liquor = 514.0239 kJ/kg, Enthalpy of Vapour = 2672.46 kJ/kg, Heat of vaporization of steam at 1.37 atm = 2184.0201 kJ/ kg & Condensation temperature of steam = 126.11 °C	CO5	PO3	10
	b)	With the help of a neat sketch, explain the working of any one natural circulation evaporator.	CO5	PO3	10
		OR			
8	a)	What are the characteristics of the feed solution which are important in the design and operation of evaporators? How do these affect the evaporation?	CO 3	PO3	08
	b)	Explain boiling point elevation and its significance.	CO 3	PO3	06
	c)	Elucidate the significance of economy and capacity of evaporators.	CO3	PO3	06
		UNIT - V			
9	a)	Explain the surface emission radiation properties.	CO2	PO3	12

		b)	Assuming the sun to be a block body emitting radiation with maximum intensity at $\lambda=0.49 \text{ } \mu\text{m}$, calculate the following: (i) The surface temperature of the sun. (ii) The heat flux at surface of the sun.	<i>CO2</i>	<i>PO3</i>	08
			OR			
	10	a)	Derive an equation to find the rate of radiation energy exchanged between two parallel plates.	<i>CO4</i>	<i>PO2</i>	08
		b)	A black body of total area 0.045 m^2 is completely enclosed in a space bounded by 5 cm thick walls of surface area 0.5 m^2 and $k=0.92 \text{ W/m K}$. Calculate the temperature of the black body if the inner and outer surface temperatures of the enclosing walls are $215 \text{ } ^\circ\text{C}$ and $30 \text{ } ^\circ\text{C}$ respectively.	<i>CO 4</i>	<i>PO2</i>	08
		c)	Write about the significance of Stefan- Boltzman and Kirchhoff's law in radiation.	<i>CO 4</i>	<i>PO2</i>	04
