

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 23CH4PCHTR

Course: Process Heat Transfer

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. Answer any FIVE full questions, choosing one full question from each unit.
2. Use of Steam tables is permitted.
3. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are the modes of heat transfer involved when a steel vessel containing water is heated using a gas stove? State the governing laws with equations.	CO4	PO2	06
		b)	Define thermal conductivity. Explain the constant and variable thermal conductivities of materials with equations.	CO1	PO2	06
		c)	Derive an equation to determine the rate of heat flow through a multilayered (three) slab. State the assumptions.	CO3	PO3	08
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Differentiate between fin effectiveness and fin efficiency.	CO2	PO2	04
		b)	List the important properties of insulation materials with examples.	CO2	PO2	06
		c)	What is critical insulation thickness? Derive an equation to determine the critical thickness of insulation for a cylinder.	CO2	PO2	10
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	What are the practical applications of unsteady-state heat transfer? Explain with some examples.	CO1	PO2	08
		b)	Derive an equation to calculate the effectiveness of a fin whose end is insulated. State all the assumptions.	CO2	PO2	12
UNIT - III						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	4	a)	Write the Nusselt's equation with the units of each term. What is the application of this equation?	CO3	PO3	04
		b)	Compare and contrast between film-type and dropwise condensation.	CO3	PO3	06

	c)	An organic oil flowing at a rate of 1500 kg/h through the inner pipe of the double-pipe heat exchanger is heated from 40 °C to 85 °C. The heat is supplied by an inorganic oil, which enters the annular space at 225 °C and leaves at 95 °C. Determine the heat transfer area and the required flow rate of inorganic oil. Assume the oils are flowing counter-currently in the heat exchanger. Data: $U = 450 \text{ W/m}^2 \text{ K}$; C_p of organic oil = 2.34 kJ/kg K; and C_p of inorganic oil = 2.51 kJ/kg K.	CO3	PO3	10
		OR			
5	a)	Explain different regimes of boiling heat transfer phenomena with a neat sketch.	CO1	PO2	10
	b)	Discuss the concept of LMTD and derive LMTD expression for counter-current heat exchangers. Write all the assumptions.	CO1	PO2	10
		UNIT - IV			
6	a)	What is evaporation? Carry out enthalpy balance for a single-effect evaporator. List any four industries where evaporation is applied.	CO1	PO2	08
	b)	With a neat sketch, explain the methods of feeding multiple-effect evaporators.	CO1	PO2	12
		UNIT - V			
7	a)	Discuss the following. i. Absorptivity ii. Reflectivity iii. Black body radiation iv. Grey body radiation	CO4	PO2	04
	b)	State and explain Kirchhoff's, Planck's, and Wien's displacement laws.	CO4	PO2	06
	c)	Find the heat transfer rate per unit area due to radiation between two infinitely long parallel planes. The first plane has an emissivity of 0.4 and is maintained at 473 K. The emissivity of the second plane is 0.2. It is maintained at 300 K. If a radiation shield having $\epsilon = 0.5$ is interposed between the given planes, find the percentage reduction in heat transfer rate.	CO4	PO2	10
