

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH4DELA2

Course: Food Engineering

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	<p>a) Discuss the world food needs and food issues around the world. 08</p> <p>b) The volumetric flow rate of beer flowing in a pipe is 1.8 L/s. The inside diameter of the pipe is 3 cm. The density of beer is 1100 kg/m^3. Calculate the average velocity of beer and its mass flow rate in kg/s. What is the mass flow rate if another pipe with a diameter of 1.5 cm is used? What will be the velocity for the same volumetric flow rate? Given: Pipe diameter = 3 cm, volumetric flow rate = 1.8 L/s and density = 1100 kg/m^3 06</p> <p>c) The following data was collected while testing a centrifugal pump for water at 308°C. Suction pressure is 5 bar, discharge pressure is 8 bar, volumetric flow rate is 15,000 L/h. Calculate the pump head at the given flow rate and power requirements. 06</p>
---	--

UNIT - II

2	<p>a) Why FSSAI (Food safety and Standards Authority of India) was established? List the detailed functions performed by FSSAI. 10</p> <p>b) Explain the meaning of food adulteration and adulterants. Briefly discuss when food is considered adulterated. 10</p>
---	--

UNIT - III

3	<p>a) Calculate the temperature of tomato juice of density $5,980 \text{ kg/m}^3$ in a steam jacketed hemispherical kettle after 5 minutes of heating. The radius of the kettle is 0.5 m. The convective heat-transfer coefficient in the steam jacket is $5000 \text{ W/m}^2 \text{ }^\circ\text{C}$. The inside surface temperature of the kettle is 90°C. The initial temperature of tomato juice is 20°C. Assume specific heat of tomato juice is $3.95 \text{ kJ/kg }^\circ\text{C}$. 06</p> <p>b) Briefly explain the high-pressure processing of food. 06</p> <p>c) Explain the concept of ohmic heating of food and advantages. 08</p>
---	--

OR

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

4 a) A liquid food is being pumped through an ohmic heater at 0.5 kg/s. The inside diameter of the heater pipe is 0.05 m and it is 3 m long. The specific heat of the liquid food is 4000 J/kg °C. The applied voltage is 15,000 V. The overall heat transfer coefficient based on the inside pipe area is 100 W/m²°C. The surrounding temperature of the air is 20°C. The liquid food enters the ohmic heater at 50°C. Assume that the properties of the liquid food are similar to 0.05 M sodium phosphate solution. Calculate the temperature at which the liquid food exits. 10

Data: Electrical properties of 0.05 M sodium phosphate.

$$\sigma_o = 0.162 \frac{S}{m}$$

$$m'' = 0.048 (\text{°C}^{-1})$$

b) Explain the freezing time criteria and Plank's equation for predicting freezing time. Also, write the limitations and assumptions of Plank's equation. 10

UNIT - IV

5 a) What are chelating agents? Discuss the functions and applications of chelating agents. 08

b) Discuss the role of humectants and anti-caking agents, leavening agents, and curing agents in food processing. 12

UNIT - V

6 a) What are the different categories of extrusion system? Explain the method of cold extrusion used in food processing industry. 10

b) Explain briefly the four functions of packaging of food. 10

OR

7 a) What is an intelligent packing system? Explicit the four identified objectives for the intelligent packaging systems. 10

b) Discuss the aseptic processing and packaging of food. 10
