

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH4DCTD2

Max Marks: 100

Course: Process Engineering Thermodynamics -II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive Maxwell's equations from fundamental property relations. State its significance.	CO2	PO2	8
		b)	Derive Clausius-Clapeyron equations with assumptions.	CO2	PO2	8
		c)	Determine the increase in entropy of solid magnesium when the temperature is increased from 300 K to 800 K at atmospheric pressure. The heat capacity is given by the following relation $C_P = 26.04 + 5.586 \times 10^{-3} T + 28.476 \times 10^{-4} T^{-2}$ Where, C_P is in J/mol K and temperature in K.	CO1	PO1	4
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Show that $dU = - [P + T \{ \frac{(\frac{\partial V}{\partial T})_P}{(\frac{\partial V}{\partial P})_T} \}] dV + C_V dT$	CO2	PO2	12
		b)	Show that $\left(\frac{\partial C_P}{\partial P} \right)_T = \left(\frac{\partial C_P}{\partial V} \right)_T = 0$	CO2	PO2	8
			UNIT - II			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Discuss how estimated fugacity from compressibility factor is, give relevant equation.	CO3	PO2	06
		b)	For isopropanol vapour at 200°C, $Z = 1 - 9.86 \times 10^{-3} P - 11.41 \times 10^{-5} P^2$. Where P is pressure in bar. Estimate the fugacity coefficient and fugacity at 50 bar and 200°C.	CO3	PO2	08
		c)	Derive property change of mixing in terms of molar volume.	CO3	PO2	06
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	4	a)	List various forms of Gibb's-Duhem equation and explain the terms.	CO3	PO2	06

	b)	Discuss on any one method to evaluation of partial molar properties.	CO3	PO2	06																	
	c)	At 300 K and 1 bar, the volumetric data for a liquid mixture of benzene and cyclohexane are represented by $V = 109.4 X 10^{-6} - 16.8 X 10^{-6}x - 2.64 X 10^{-6}x^2$, where x is the mole fraction of benzene and 'V' has the units of m^3/mol . Find the expressions for the partial molar volumes of benzene and cyclohexane.	CO3	PO2	08																	
		UNIT-III																				
5	a)	Draw T-x-y and P-x-y diagram for binary VLE mixture and explain.	CO4	PO3	10																	
	b)	From the following vapor pressure data, construct the temperature-composition diagram at 1 atm, for the system benzene-toluene, assuming ideal solution behavior.	CO4	PO3	10																	
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th rowspan="2">Temperature ($^{\circ}$C)</th> <th colspan="2">Vapor pressure (mm Hg)</th> </tr> <tr> <th>Benzene</th> <th>Toluene</th> </tr> </thead> <tbody> <tr> <td>80</td> <td>760</td> <td>300</td> </tr> <tr> <td>92</td> <td>1078</td> <td>432</td> </tr> <tr> <td>100</td> <td>1344</td> <td>559</td> </tr> <tr> <td>110.4</td> <td>1748</td> <td>760</td> </tr> </tbody> </table>	Temperature ($^{\circ}$ C)	Vapor pressure (mm Hg)		Benzene	Toluene	80	760	300	92	1078	432	100	1344	559	110.4	1748	760			
Temperature ($^{\circ}$ C)	Vapor pressure (mm Hg)																					
	Benzene	Toluene																				
80	760	300																				
92	1078	432																				
100	1344	559																				
110.4	1748	760																				
		OR																				
6	a)	Show that the chemical potential of each component is same in all phases, when the phases are in equilibrium.	CO4	PO3	10																	
	b)	Determine the composition of the liquid which is in equilibrium with a vapour containing 50 mole% benzene and 50 mole% toluene at 368 K. Data: The vapour pressure of benzene and toluene at 368 K are 1176.21 Torr and 477.03 Torr respectively.	CO4	PO3	10																	
		UNIT - IV																				
7	a)	Define azeotropes and explain minimum boiling and maximum boiling azeotropes with P-x-y and T-x-y diagrams.	CO6	PO3	10																	
	b)	The following data gives the composition versus total pressure for the system chloroform (1)-ethyl alcohol (2) at 328 K: <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Components</th> <th>1</th> <th>2</th> </tr> </thead> <tbody> <tr> <td>x_i</td> <td>0.0331</td> <td>0.0348</td> </tr> <tr> <td>P, kPa</td> <td>40.84</td> <td>84.88</td> </tr> </tbody> </table> Vapor pressures of chloroform and acetone at 328 K are 82.35 and 37.30 kPa, respectively. Estimate the constants in the Margules equation	Components	1	2	x_i	0.0331	0.0348	P, kPa	40.84	84.88	CO4	PO3	10								
Components	1	2																				
x_i	0.0331	0.0348																				
P, kPa	40.84	84.88																				
		OR																				

	8	a)	Explain the Redlich-Kister method to check the consistency of the given VLE data.	CO6	PO3	4
		b)	Liquids A and B form an azeotrope containing 46.1 mole per cent A at 101.3 kPa and 345 K. At 345 K, the vapor pressure of A is 84.8 kPa and that of B is 78.2 kPa. Calculate the van Laar constants.	CO4	PO3	8
		c)	At 318 K and 24.4 kPa, the composition of the system ethanol (1) and toluene (2) at equilibrium is $x_1 = 0.3$ and $y_1 = 0.634$. The saturation pressures at the given temperature for the pure components are $P_1^s = 23.06$ kPa and $P_2^s = 10.05$ kPa, respectively. Calculate the liquid-phase activity coefficients.	CO4	PO3	8
			UNIT - V			
	9	a)	Derive an equation to relate Gibbs free energy change with chemical reaction equilibrium constant.	CO5	PO3	10
		b)	A gas mixture containing 25% CO, 55% H ₂ and 20% inert gas is to be used for methanol synthesis. The gases issue from the catalyst chamber in chemical equilibrium with respect to the reaction. $\text{CO (g)} + 2\text{H}_2 \text{ (g)} \rightarrow \text{CH}_3\text{OH (g)}$ at a pressure of 300 bar and temperature of 625 K. Assume that the equilibrium mixture forms an ideal solution and K and K_0 are 4.5×10^{-5} and 0.35 respectively. Find the per cent conversion of CO.	CO5	PO3	10
			OR			
	10	a)	Derive the relationship between mole fraction of species in multiple reactions and the extent of reactions.	CO5	PO3	10
		b)	In the synthesis of ammonia, initial amounts of nitrogen and hydrogen around 2 and 6 moles are sent to a reactor where the following reaction occurs $\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3$. The equilibrium constant for the reaction at 875 K may be taken equal to 4×10^{-4} . <ol style="list-style-type: none"> Determine the percent conversion of nitrogen to ammonia at 875 K and 10 bar. What would be the conversion at 875 K and 100 bar and how this change effects the conversion of nitrogen to ammonia? 	CO5	PO3	10
