

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH4DCTD2

Course: Process Engineering Thermodynamics-II

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 21.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

- 1 a) Define and explain the significance of Helmholtz free energy and Gibb's free energy. **04**
 b) Derive the Maxwell relations from fundamentals. **10**
 c) Carbon tetrachloride boils at 349.75 K at 1 bar. If its latent heat of vaporization is 194.8 kJ/kg, what would be the boiling point of carbon tetrachloride at 2 bar? **06**

OR

- 2 a) Prove the following relations starting from the fundamentals. **10**
 (i) $(\partial S / \partial T)_P = C_p / K$
 (ii) $C_p - C_v = \beta^2 V T / K$
 b) Explain the significance of Joule-Thomson coefficient and prove that it is zero for ideal gases. **05**
 c) What are the different types of thermodynamic diagrams? Explain any one of them with the field of application. **05**

UNIT - II

- 3 a) State and explain the applicable range and significance of Lewis-Randall rule and Henry's law. **05**
 b) Calculate the fugacity of CO at 50 bar and 400 bar, if the following data are applicable at 273 K. **10**

P, bar	25	50	100	200	400	800
Z	0.989	0.979	0.974	1.0196	1.2482	1.8057

- c) Derive Gibb's-Helmholtz equation. Prove that Gibbs free energy is a generating function. **5**

OR

- 4 a) What are partial molar properties? How does this equation reduce to Gibb's-Duhem equation? **08**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

- b) The volume of a mixture of two organic liquids 1 and 2 are represented by the following equation. 07

$$V = 110.0 - 17.1x_1 - 2.5x_1^2$$

where V is the volume in m^3/mol at 300 K and 1 bar. Obtain the expressions for the partial molar volumes and also determine the following.

- The partial molar properties of component 1 and 2 at $x_1 = 0.4$
- The pure component volumes (V_1 and V_2)

- c) Obtain equations for any two energy property change of mixing ideal gases to form an ideal solution. 05

UNIT - III

- 5 a) Draw and explain the dew and bubble point diagrams. 06
- b) The binary system, acetone (1)-acetonitrile (2) conforms closely to Raoult's law. Using the vapour pressure data, plot $P-x_1$ and $P-y_1$ at 323 K. The vapor pressures of acetone and acetonitrile at 323 K are 81.97 kPa and 33.79, kPa respectively. 09
- c) What is the criterion of thermodynamic equilibrium in multicomponent systems? Derive the expression. 05

UNIT - IV

- 6 a) What are the high boiling and low boiling azeotropes? Explain any one with the help of T-x,y and equilibrium diagram. 06
- b) Explain any two methods for testing the consistency of VLE data. 06
- c) Water (1) and hydrazine (2) system forms an azeotrope containing 42.5% (mol) water at 393 K and 101.3 kPa.
- Evaluate the van Laar's constants. The vapour pressure of water at 393 K is 199.62 kPa and that of hydrazine is 124.76 kPa.
 - Calculate the activity coefficients for a solution containing 20% hydrazine. 08

UNIT - V

- 7 a) Define extent of reaction. Derive an expression to relate the extent of reaction and the mole fraction of components involved in the reaction. 05
- b) Derive an equation to relate equilibrium constant and standard free energy change of reacting system. 05
- c) n-butane is isomerized to i-butane by the action of catalyst at moderate temperature. It is found that the equilibrium is attained at the following compositions. 10

Temperature, K	Mole %, n-butane
317	31
391	43

Assuming that the activities are equal to mole fractions, calculate the standard free energy of the reaction at 317 K and 391K and average value of heat of reaction over this temperature.
