

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH4DCTD2

Course: Process Engineering Thermodynamics-II

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Starting from exact differential, derive Maxwell relations.	CO1	PO1	08
	b)	Show that $C_P - C_V = \frac{TV \alpha^2}{\beta}$ Where, α = Volume of thermal expansion and β = Volume of thermal contraction	CO2	PO2	12
		OR			
2	a)	Explain the significance of Joule Thomson coefficient.	CO1	PO1	04
	b)	What are thermodynamic diagrams? Explain the T-S and H-S phase diagrams for a binary solution with a neat sketch.	CO1	PO1	10
	c)	Explain the Gibbs Helmholtz equation and list its applications.	CO2	PO2	06
		UNIT - II			
3	a)	Discuss the effect of pressure and temperature on fugacity.	CO2	PO2	06
	b)	For isopropanol vapour at 200°C, $Z = 1 - 9.86 \times 10^{-3}P - 11.41 \times 10^{-5}P^2$ Where P is pressure in bar. Estimate the fugacity coefficient and fugacity at 25 bars.	CO3	PO2	06
	c)	It is decided to prepare 0.1 m ³ of alcohol-water solution by mixing 0.03 m ³ alcohol with 0.07 m ³ pure water. How much volume should have been mixed in order to prepare a mixture of the same strength and of the required volume? Data: <ul style="list-style-type: none">• Density of ethanol = 789 kg / m³• Density of water = 997 kg / m³• The partial molar volume of ethanol = 53.6×10^{-6} m³ /mol• The partial molar volume of water = 18×10^{-6} m³ /mol.	CO4	PO3	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	<p>The volume of an aqueous solution of NaCl at 298 K was measured for a series of molalities (moles of solute per kg of solvent) and it was found that the volume varies with molality according to the following expression.</p> $V = 1.003 \times 10^{-3} + 0.1662 \times 10^{-4}m + 0.177 \times 10^{-5}m^{1.5} + 0.12 \times 10^{-6}m^2$ <p>Where m is the molality and V is in m³. Calculate the partial molar volumes of the components at m = 0.1 mol/kg.</p>	CO4	PO3	10
	b)	Derive Gibbs-Dehum equation in terms of fugacity.	CO3	PO 2	10
		UNIT - III			
5	a)	<p>Discuss Criteria of equilibrium for the following cases:</p> <ol style="list-style-type: none"> System at constant U and V System at constant T and V. System at constant T and P 	CO4	PO3	10
	b)	Discuss influence of temperature and pressure on chemical potential.	CO4	PO3	10
		UNIT - IV			
6	a)	Using relevant mathematical correlation explain the significance of (i) Wilson equation and (ii) Margules equation.	CO5	PO3	08
	b)	<p>The pure component vapour pressure of two organic liquids X and Y by Antoine equation are given by</p> $\ln P_1^{Sat} = 14.35 - \frac{2942}{T+220} \quad \text{and} \quad \ln P_2^{Sat} = 14.25 - \frac{2960}{T+210};$ <p>Where, P_1^{Sat} and P_2^{Sat} are in kPa and T in °C.</p> <p>Calculate the composition of liquid and vapour in equilibrium at 77° C and 75 kPa.</p>	CO 6	PO3	12
		UNIT - V			
7	a)	Discuss the factors affecting equilibrium conversion.	CO3	PO3	06
	b)	<p>The standard heat of formation and the standard free energy of formation of ammonia at 298 K are - 46100 J/mol and -16500 J/mol respectively. Calculate the equilibrium constant for the reaction at 500K</p> $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ <p>Assuming standard heat of reaction is constant in the same temperature range of 298 K to 500 K.</p>	CO6	PO3	14
