

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CH4PCTD2

Max Marks: 100

Course: Process Engineering Thermodynamics-II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the Maxwell relationships using the four fundamental property relations.	<i>CO1</i>	<i>PO1</i>	10
	b)	From the expression $(\partial S/\partial T) p = C_p/T$ and $(\partial H/\partial T) p = C_p$ justify that the entropy change of system at constant pressure is less than the enthalpy change under same conditions.	<i>CO2</i>	<i>PO2</i>	10
OR					
2	a)	Mercury has a density of 13690 kg/m^3 in the liquid state and 14193 kg/m^3 in the solid state. Both were measured at the melting point of 234.33 K at 1 bar pressure. If the heat of fusion of mercury is 9.7876 kJ/kg , what is the melting point of mercury at 10 bar pressure?	<i>CO3</i>	<i>PO2</i>	07
	b)	Using Maxwell and fundamental relations, show that for ideal gases $C_p - C_v = R$.	<i>CO1</i>	<i>PO1</i>	07
	c)	Justify the significance of Helmholtz equation and free energy change in the estimation of thermodynamic properties.	<i>CO2</i>	<i>PO3</i>	06
UNIT - II					
3	a)	Illustrate the effect of temperature and pressure on fugacity using relevant equations.	<i>CO3</i>	<i>PO3</i>	10
	b)	Justify that entropy change of mixing supports 2 nd Law of thermodynamics and free energy change supports irreversible mixing process.	<i>CO3</i>	<i>PO3</i>	10
OR					
4	a)	Derive Gibbs-duhem equation for a binary component system.	<i>CO6</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Define partial molar property and illustrate the different methods used to estimate the partial molar properties.	CO6	PO3	10						
		UNIT - III									
5	a)	Prove that if Raoult's law is valid for one constituent of a binary solution over the whole concentration range, it must also apply to the other constituent.	CO6	PO3	10						
	b)	<p>Binary system acetonitrile-nitromethane confirms closely to Raoult's law. Vapour pressure for the pure species is given by the Antoine equations.</p> $\ln P_1^{sat} = 14.2724 - \frac{2945.47}{T-49.15} \text{ and}$ $\ln P_2^{sat} = 14.2043 - \frac{2972.64}{T-64.15}$ <p>Plot P-x-y diagram for the given system at 75°C.</p>	CO3	PO2	10						
		UNIT - IV									
6	a)	Water (1)-hydrazine (2) system forms an azeotrope containing 60% (mol) hydrazine at 393 K and 101.3 kPa. Calculate the equilibrium vapour composition for a solution containing 30% (mol) hydrazine. The relative volatility of water with reference to hydrazine is 1.6 and may be assumed to remain constant in the temperature range involved. The vapour pressure of hydrazine at 393 K is 124.76 kPa.	CO3	PO2	10						
	b)	Explain the salient features of minimum boiling azeotropes and maximum boiling azeotropes using a suitable two component system.	CO4	PO3	10						
		UNIT - V									
7	a)	Derive the relationship between mole fraction of species in single and multiple reactions and the extent of reactions.	CO 5	PO 3	07						
	b)	n-Butane is isomerized to i-butane by the action of catalyst at moderate temperatures. It is found that the equilibrium is attained at the following compositions.	CO5	PO3	07						
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Temperature, K</th> <th>Mole % (n -Butane)</th> </tr> </thead> <tbody> <tr> <td>317</td> <td>31</td> </tr> <tr> <td>391</td> <td>43</td> </tr> </tbody> </table> <p>Assuming that activities are equal to the mole fractions, calculate the standard free energy of the reaction at 317 K and 391 K and average value of heat of reaction over this temperature range.</p>	Temperature, K	Mole % (n -Butane)	317	31	391	43			
Temperature, K	Mole % (n -Butane)										
317	31										
391	43										
	c)	Illustrate the effect of temperature on equilibrium constant and derive the relevant equation.	CO2	PO2	06						
