

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CH4PCTD2

Max Marks: 100

Course: Process Engineering Thermodynamics - II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive Maxwell's relations starting from fundamental property relations.	<i>CO1</i>	<i>PO1</i>	10
	b)	Mercury has density of 13690 kg/m ³ in the liquid state and 14193 kg/m ³ in the solid state, both measured at the melting point of 234.33K at 1 bar. If the heat of fusion of mercury is 9.7876 kJ/kg, Estimate the melting point of mercury at 10 bars.	<i>CO2</i>	<i>PO2</i>	06
	c)	Show that Cp and Cv of ideal gases are independent of pressure and volume.	<i>CO 2</i>	<i>PO2</i>	04
OR					
2	a)	Explain Joule-Thomson coefficient with the state of gas.	<i>CO1</i>	<i>PO1</i>	06
	b)	Derive Gibbs-Helmholtz equation and its applications.	<i>CO2</i>	<i>PO2</i>	06
	c)	Derive the relationship $C_P - C_V = \frac{TV\beta^2}{\kappa}$ Where, β = the coefficient of compressibility and κ = The coefficient of volume expansion.	<i>CO2</i>	<i>PO2</i>	08
UNIT - II					
3	a)	Explain any three methods for estimating the fugacity of pure gas.	<i>CO3</i>	<i>PO3</i>	10
	b)	Explain effect of pressure and temperature on activity.	<i>CO3</i>	<i>PO3</i>	06
	c)	Define the residual properties.	<i>CO3</i>	<i>PO3</i>	04
OR					
4	a)	The volume of an aqueous solution of NaCl at 298 K was measured for a series of molalities (moles of solute per kg of solvent) and it was found that the volume varies with molality according to the following expression. $V = 1.003 \times 10^{-3} + 0.1662 \times 10^{-4}m + 0.177 \times 10^{-5}m^{1.5} + 0.12 \times 10^{-6}m^2$ Where m is the molality and V is in m ³ . Calculate the partial molar volumes of the components at m = 0.1 mol/kg.	<i>CO4</i>	<i>PO3</i>	10

	b)	Derive Gibbs-Dehum equation in terms of activity coefficient.	CO3	PO3	10
UNIT - III					
5	a)	Explain the criteria of phase equilibrium.	CO6	PO3	05
	b)	With neat sketch explain T-x-y diagram and equilibrium diagram.	CO5	PO3	08
	c)	Prove that if Raoult's law is valid for one constituent of a binary solution over the whole concentration range, it must also apply to the other constituent.	CO5	PO3	07
UNIT - IV					
6	a)	Prove that at the azeotropic composition, the vapour and liquid have the same composition.	CO5	PO3	08
	b)	The azeotrope of the ethanol–benzene system has a composition of 44.8% (mol) ethanol with a boiling point of 341.4 K at 101.3 kPa. At this temperature the vapour pressure of benzene is 68.9 kPa and the vapour pressure of ethanol is 67.4 kPa. What are the activity coefficients in a solution containing 10% alcohol?	CO6	PO3	12
UNIT - V					
7	a)	Explain the effect of temperature on equilibrium constant.	CO6	PO3	08
	b)	Estimate the standard free energy change and equilibrium constant at 700 K for the reaction $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ <p>The standard heat of formation and standard free energy of formation of ammonia at 298 K to be $-46,100 \text{ J/mol}$ and $-16,500 \text{ J/mol}$ respectively. The specific heat (J/mol K) data are given below as function of temperature (K):</p> $C_p = 27.27 + 4.93 \times 10^{-3}T \text{ for } N_2$ $C_p = 27.01 + 3.51 \times 10^{-3}T \text{ for } H_2$ $C_p = 29.75 + 25.11 \times 10^{-3}T \text{ for } NH_3$	CO6	PO3	12
