

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## February 2025 Semester End Main Examinations

**Programme: B.E.**

**Branch: Chemical Engineering**

**Course Code: 23CH4PCTD2 / 22CH4PCTD2**

**Course: Process Engineering Thermodynamics-II**

**Semester: IV**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I                                                                                                                                                                                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO   | PO   | Marks     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------|
| Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1  | <p>a) Derive Clausius-Clapeyron equation using Clapeyron equation given below:</p> $\frac{dP}{dT} = \frac{\Delta\hat{H}_{vap}}{T(\hat{V}_g - \hat{V}_l)}$ <p>Where P, T, <math>\Delta\hat{H}_{vap}</math>, <math>\hat{V}_g</math> &amp; <math>\hat{V}_l</math> are vapor pressure, temperature, molar enthalpy of vaporization, molar volume of gas &amp; molar volume of liquid respectively. Then, using Clausius-Clapeyron equation, determine the vapor pressure in mm Hg of a substance at 45°C if its boiling point at 1 atm is 115°C and its enthalpy of vaporization is 57.9 kJ/mol.</p> | CO 1 | PO 1 | <b>10</b> |
|                                                                                                                                                                                                | b) | <p>The equation of state of a certain substance is given by the expression <math>V = RT/P - C/T^3</math>, and the specific heat is given by the relation <math>C_p = A + BT</math> where A, B, and C are constants. Derive expressions for changes in internal energy (dU) and entropy (dS) for an isothermal process. Given</p> $dU = C_p dT - \left[ PdV + T \left( \frac{\partial V}{\partial T} \right)_P dP \right]$ $dS = \frac{C_p}{T} dT - \left( \frac{\partial V}{\partial T} \right)_P dP$                                                                                            | CO 1 | PO 1 | <b>10</b> |
|                                                                                                                                                                                                | 2  | <p><b>OR</b></p> <p>a) At 573 K and pressures of 0–6.0 MPa, the Joule-Thomson coefficient of N<sub>2</sub> (g) can be represented as</p> $\mu = 0.14 - 2.533 \times 10^{-2}P$ <p>Where, <math>\mu</math> is in <math>(\frac{K}{MPa})</math>. Assuming this equation to be temperature-independent near 573 K, find the temperature drop which may be expected in the Joule-Thomson expansion of the gas from 6.0 MPa to 2.0 MPa pressure.</p>                                                                                                                                                    | CO 3 | PO2  | <b>12</b> |
|                                                                                                                                                                                                | b) | Derive Gibbs Helmholtz equation with suitable assumptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 3 | PO2  | <b>08</b> |

| <b>UNIT - II</b>  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |           |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------|
| 3                 | a) | <p>A compound whose vapor phase is described by the equation of state given below:</p> $V = \frac{RT}{P} + 0.3TP^2$ <p>Where, <math>V</math> is molar volume of vapor phase in <math>\left(\frac{cm^3}{mol}\right)</math>. Compute the fugacity for this compound in the vapor phase at <math>T = 50^\circ C</math> and <math>P = 0.1</math> bar.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>CO 3</i> | <i>PO 2</i> | <b>10</b> |
|                   | b) | <p>Henry law constant for <math>CO_2</math> in water is <math>1.67 \times 10^8</math> Pa at 298 K. Calculate the amount of <math>CO_2</math> in 500 ml soda water when packed under 2.5 atm <math>CO_2</math> pressure at 298 K.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>CO 3</i> | <i>PO 2</i> | <b>10</b> |
| <b>OR</b>         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |           |
| 4                 | a) | <p>Derive the expression for Gibb's-Duhem equation for a system that comprises of <math>n</math> type of constituents with <math>n_1, n_2, \dots</math> moles.</p> $\sum n_i d\mu_i = 0$ <p>Where <math>\mu</math> represents the chemical potential of species.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>CO2</i>  | <i>PO2</i>  | <b>12</b> |
|                   | b) | <p>The need arises in a laboratory for <math>2\ m^3</math> of an antifreeze solution consisting of 30 mol % methanol (1) in water (2). What volumes of pure methanol and of pure water at <math>25^\circ C</math> must be mixed to form the <math>2\ m^3</math> of antifreeze?</p> <p>Data:</p> <p>Partial molar volumes (<math>\bar{V}</math>) for methanol and water in a 30 mol % methanol solution and their pure species molar volumes (<math>\bar{V}^0</math>), both at <math>25^\circ C</math>, are:</p> <ul style="list-style-type: none"> <li>• Methanol (1):<br/> <math>\bar{V}_1 = 38.632 \times 10^{-6}\ m^3/mol</math> &amp; <math>\bar{V}_1^0 = 40.727 \times 10^{-6}\ m^3/mol</math></li> <li>• Water (2):<br/> <math>\bar{V}_2 = 17.765 \times 10^{-6}\ m^3/mol</math> and <math>\bar{V}_2^0 = 18.068 \times 10^{-6}\ m^3/mol</math></li> </ul> | <i>CO 3</i> | <i>PO 2</i> | <b>08</b> |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |           |
| 5                 | a) | Define chemical potential and derive the criteria for phase equilibrium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>CO 4</i> | <i>PO 3</i> | <b>10</b> |
|                   | b) | <p>Binary system benzene (1) and toluene (2) conforms closely Raoult's law. Vapor pressures for the pure species are given by the following equations:</p> $\ln P_1^{sat}(kPa) = 13.7819 - \frac{2726.81}{T(\text{C}) + 217.572}$ $\ln P_2^{sat}(kPa) = 13.9320 - \frac{3056.96}{T(\text{C}) + 217.625}$ <p>Calculate the <math>y_1</math> &amp; <math>P</math>, if <math>x_1 = 0.33</math> &amp; <math>T = 100^\circ C</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>CO4</i>  | <i>PO 3</i> | <b>10</b> |
| <b>OR</b>         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |           |
| 6                 | a) | <p>Derive the criteria for phase equilibrium for the following conditions</p> <ol style="list-style-type: none"> <li>Constant U and V</li> <li>Constant T and V</li> <li>Constant P and T</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>CO4</i>  | <i>PO3</i>  | <b>10</b> |

|                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |       |       |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-------|-------|-----|-----|-----|----------------------|-------|-------|-------|-------|-------|-------|----------------------|------|------|------|------|------|-------|-----|-----|----|
|                      | b)    | <p>Mixtures of n-Heptane (A) and n-Octane (B) behave ideally. The total pressure over the system is 101.3 kPa. Using the vapour pressure data given below</p> <table border="1"> <tr> <td>Temperature (T), K</td><td>371</td><td>378</td><td>383</td><td>388</td><td>393</td><td>399</td></tr> <tr> <td>P<sub>A</sub>, kPa</td><td>101.3</td><td>125.3</td><td>140.0</td><td>160.0</td><td>179.9</td><td>205.3</td></tr> <tr> <td>P<sub>B</sub>, kPa</td><td>44.4</td><td>55.6</td><td>64.5</td><td>74.8</td><td>86.6</td><td>101.3</td></tr> </table> <p>i. Construct the boiling point diagram.<br/>ii. The equilibrium diagram.<br/>Deduce an equation for the equilibrium diagram using an arithmetic average <math>\alpha</math> value.</p>                                                                                                                                                                                | Temperature (T), K | 371   | 378   | 383   | 388 | 393 | 399 | P <sub>A</sub> , kPa | 101.3 | 125.3 | 140.0 | 160.0 | 179.9 | 205.3 | P <sub>B</sub> , kPa | 44.4 | 55.6 | 64.5 | 74.8 | 86.6 | 101.3 | CO4 | PO3 | 10 |
| Temperature (T), K   | 371   | 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 383                | 388   | 393   | 399   |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
| P <sub>A</sub> , kPa | 101.3 | 125.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140.0              | 160.0 | 179.9 | 205.3 |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
| P <sub>B</sub> , kPa | 44.4  | 55.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64.5               | 74.8  | 86.6  | 101.3 |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      |       | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |       |       |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
| 7                    | a)    | Classify and explain azeotrope with examples. How do azeotropes affect the separation process in distillation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO 5               | PO 3  | 10    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      | b)    | Derive the Van Laar equation for activity coefficients $\gamma_1$ and $\gamma_2$ of components in a binary non-ideal solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO 5               | PO 3  | 10    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      |       | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |       |       |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
| 8                    | a)    | What are azeotropes? With a neat diagram explain the importance of minimum boiling azeotrope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO4                | PO3   | 08    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      | b)    | <p>The following values refer to the Wilson parameters for the system acetone (1) – water (2): <math>a_{12} = 1225.31 \text{ J/mol}</math>, <math>a_{21} = 6051.01 \text{ J/mol}</math>, <math>V_1 = 74.05 \times 10^{-6} \frac{\text{m}^3}{\text{mol}}</math>, <math>V_2 = 18.07 \times 10^{-6} \frac{\text{m}^3}{\text{mol}}</math>. The vapour pressures are estimate using Antoine equation. The Antoine constants for both the components are <math>A_1 = 14.39</math>, <math>B_1 = 2795.81</math>, <math>C_1 = -14.39</math>, <math>A_2 = 16.26</math>, <math>B_2 = 3799.88</math>, <math>C_2 = -46.85</math>.</p> <p>Calculate the equilibrium pressure and composition of</p> <ol style="list-style-type: none"> <li>Vapour in equilibrium with a liquid of composition <math>x_1 = 0.43</math> at 349 K.</li> <li>The liquid in equilibrium with a vapour of concentration <math>y_1 = 0.8</math> at 349 K.</li> </ol> | CO 5               | PO3   | 12    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      |       | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |       |       |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
| 9                    | a)    | Define the criteria for chemical reaction equilibrium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 6               | PO 3  | 04    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      | b)    | Derive the relationship between equilibrium constant and the standard free energy change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 6               | PO 3  | 08    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      | c)    | <p>Evaluate the equilibrium constant at 600 K for the reaction</p> $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$ <p>Given that the Gibbs free energy function</p> $\phi_{298} = \frac{G_T^0 - H_{298}^0}{T}$ <p>For CO, H<sub>2</sub> and methanol at 600 K are -203.81, -136.39 and -249.83 J/mol K. The heats of formation at 298 K of CO(g) and CH<sub>3</sub>OH (g) at 298 K are -1,10,500 J/mol and -2,00,700 J/mol.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO6                | PO3   | 08    |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |
|                      |       | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |       |       |       |     |     |     |                      |       |       |       |       |       |       |                      |      |      |      |      |      |       |     |     |    |

|  |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |           |
|--|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|  | 10 | a) | Explicate the effect of temperature and pressure on equilibrium constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO6 | PO3 | <b>10</b> |
|  |    | b) | <p>A gas mixture containing 25% CO, 55% H<sub>2</sub> and 20% inert gas is to be used for methanol synthesis. The gases issue from the catalyst chamber in chemical equilibrium with respect to the reaction.</p> $\text{CO (g)} + 2\text{H}_2\text{ (g)} \rightarrow \text{CH}_3\text{OH (g)}$ <p>at a pressure of 300 bar and temperature of 625 K. Assume that the equilibrium mixture forms an ideal solution and <math>K</math> and <math>K_\varnothing</math> are <math>4.5 \times 10^{-5}</math> and 0.35 respectively. Find the percentage conversion of CO.</p> | CO6 | PO3 | <b>10</b> |

\*\*\*\*\*

B.M.S.C.E. - ODD SEM 2024-25