

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## June 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: IV**

**Branch: Chemical Engineering**

**Duration: 3 hrs.**

**Course Code: 23CH4PCTD2 / 22CH4PCTD2**

**Max Marks: 100**

**Course: Process Engineering Thermodynamics-II**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>  |    |                                                                                                                                                                                                                                                                                                                                                         | <b>CO</b> | <b>PO</b> | <b>Marks</b> |
|------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|
| 1                | a) | Derive Maxwell's equations from fundamental property relations. State its significance.                                                                                                                                                                                                                                                                 | CO2       | PO2       | <b>8</b>     |
|                  | b) | Derive Clausius-Clapeyron equations with assumptions.                                                                                                                                                                                                                                                                                                   | CO2       | PO2       | <b>8</b>     |
|                  | c) | Determine the increase in entropy of solid magnesium when the temperature is increased from 300 K to 800 K at atmospheric pressure. The heat capacity is given by the following relation<br>$C_P = 26.04 + 5.586 \times 10^{-3} T + 28.476 \times 10^{-4} T^{-2}$ Where, $C_P$ is in J/mol K and temperature in K.                                      | CO1       | PO1       | <b>4</b>     |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                                                                                                                         |           |           |              |
| 2                | a) | Show that $dU = - [ P + T \{ \frac{(\frac{\partial V}{\partial T})_P}{(\frac{\partial V}{\partial P})_T} \} ] dV + C_V dT$                                                                                                                                                                                                                              | CO2       | PO2       | <b>12</b>    |
|                  | b) | Show that<br>$\left( \frac{\partial \mathcal{X}_P}{\partial P} \right)_T = \left( \frac{\partial \mathcal{X}_P}{\partial V} \right)_T = 0$                                                                                                                                                                                                              | CO2       | PO2       | <b>8</b>     |
| <b>UNIT - II</b> |    |                                                                                                                                                                                                                                                                                                                                                         |           |           |              |
| 3                | a) | Derive an Equation to deduce the effect of temperature and effect of pressure on the activity coefficient using fugacity equations for effect of pressure and temperature respectively.                                                                                                                                                                 | CO3       | PO2       | <b>10</b>    |
|                  | b) | The fugacity of component 1 in binary liquid mixture of components 1 and 2 at 298 K and 20 bar is given by where is in bar and $x_1$ are the mole fraction of component 1.<br>Determine, (i) The fugacity $f_1$ of pure component 1; (ii) The fugacity coefficient $f_1$ ; (iii) The Henry's law constant $K_1$ ; (iv) The activity coefficient $g_1$ . | CO3       | PO2       | <b>10</b>    |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                                                                                                                         |           |           |              |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----------|--|--------|-------|-----|-----|-----|-----|-------|---------------|-------|-------|-----|-----|-------|-------|---------------|------|------|------|------|------|
|                  | 4                 | a)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Derive Gibbs-Duhem equation in terms of activity coefficient.                                                                                                                                                                                                                                                                                                                                              | CO3  | PO2       | <b>10</b> |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  |                   | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | At 300 K and 1 bar, the volumetric data for a liquid mixture of benzene and cyclohexane are represented by<br>$V = 109.4 \times 10^{-6} - 16.8 \times 10^{-6}x - 2.64 \times 10^{-6}x^2$ , where x is the mole fraction of benzene and V has the units of $m^3/mol$ . Find the expressions for the partial molar volumes of benzene and cyclohexane.                                                       | CO3  | PO2       | <b>10</b> |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  | <b>UNIT - III</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  | 5                 | a)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Explain the boiling point diagram (T-x-y diagram) along with the effect of pressure on Vapour-Liquid-Equilibria.                                                                                                                                                                                                                                                                                           | CO4  | PO3       | <b>10</b> |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  |                   | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The vapour pressures of acetone (1) and acetonitrile (2) can be evaluated by the Antoine equations<br>$\ln P_1^S = 14.5463 - \frac{2940.46}{T - 35.93}$<br>$\ln P_2^S = 14.2724 - \frac{2945.47}{T - 49.15}$<br>Where T is in K and P is in kPa. Assuming that the solutions formed by these are ideal, calculate<br>(i) $x_1$ and $y_1$ at 327 K and 65 kPa<br>(ii) T and $y_1$ at 65 kPa and $x_1 = 0.4$ | CO4  | PO3       | <b>10</b> |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  | <b>OR</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  | 6                 | a)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mixtures of <i>n</i> -Heptane (A) and <i>n</i> -Octane (B) are expected to behave ideally. The total pressure over the system is 101.3 kPa. Using the vapour pressure data given below,<br>(i) Construct the boiling point diagram and<br>(ii) The equilibrium diagram<br>(iii) Deduce an equation for the equilibrium diagram using an arithmetic average “ $\alpha$ ” value.                             | CO4  | PO3       | <b>10</b> |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  |                   | <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>T, (K)</td> <td>371.4</td> <td>378</td> <td>383</td> <td>388</td> <td>393</td> <td>398.6</td> </tr> <tr> <td><math>P_s^A</math> (kPa)</td> <td>101.3</td> <td>125.3</td> <td>140</td> <td>160</td> <td>179.9</td> <td>205.3</td> </tr> <tr> <td><math>P_s^B</math> (kPa)</td> <td>44.4</td> <td>55.6</td> <td>64.5</td> <td>74.8</td> <td>86.6</td> <td>101.3</td> </tr> </table> |                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |           |  | T, (K) | 371.4 | 378 | 383 | 388 | 393 | 398.6 | $P_s^A$ (kPa) | 101.3 | 125.3 | 140 | 160 | 179.9 | 205.3 | $P_s^B$ (kPa) | 44.4 | 55.6 | 64.5 | 74.8 | 86.6 |
| T, (K)           | 371.4             | 378                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 383                                                                                                                                                                                                                                                                                                                                                                                                        | 388  | 393       | 398.6     |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
| $P_s^A$ (kPa)    | 101.3             | 125.3                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140                                                                                                                                                                                                                                                                                                                                                                                                        | 160  | 179.9     | 205.3     |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
| $P_s^B$ (kPa)    | 44.4              | 55.6                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64.5                                                                                                                                                                                                                                                                                                                                                                                                       | 74.8 | 86.6      | 101.3     |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  | b)                | Explain the P-x-y diagram with the effect of temperature near the critical point.                                                                                                                                                                                                                                                                                                                                                                            | CO4                                                                                                                                                                                                                                                                                                                                                                                                        | PO3  | <b>10</b> |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
| <b>UNIT - IV</b> |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
| 7                | a)                | Define azeotropes and explain minimum boiling and maximum boiling azeotropes with P-x-y and T-x-y diagrams.                                                                                                                                                                                                                                                                                                                                                  | CO6                                                                                                                                                                                                                                                                                                                                                                                                        | PO3  | <b>10</b> |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |
|                  | b)                | The following data gives the composition versus total pressure for the system chloroform (1)-ethyl alcohol (2) at 328 K:                                                                                                                                                                                                                                                                                                                                     | CO4                                                                                                                                                                                                                                                                                                                                                                                                        | PO3  | <b>10</b> |           |  |        |       |     |     |     |     |       |               |       |       |     |     |       |       |               |      |      |      |      |      |

|                |                         |        | <table border="1"> <tr> <td>Components</td><td>1</td><td>2</td></tr> <tr> <td><math>x_i</math></td><td>0.0331</td><td>0.0348</td></tr> <tr> <td>P, kPa</td><td>40.84</td><td>84.88</td></tr> </table>                                                                                                                                                                                                                      | Components     | 1                       | 2   | $x_i$ | 0.0331 | 0.0348 | P, kPa | 40.84 | 84.88 |  |  |  |
|----------------|-------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|-----|-------|--------|--------|--------|-------|-------|--|--|--|
| Components     | 1                       | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |
| $x_i$          | 0.0331                  | 0.0348 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |
| P, kPa         | 40.84                   | 84.88  |                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |
|                |                         |        | Vapor pressures of chloroform and acetone at 328 K are 82.35 and 37.30 kPa, respectively. Estimate the constants in the Margules equation                                                                                                                                                                                                                                                                                  |                |                         |     |       |        |        |        |       |       |  |  |  |
|                |                         |        | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                         |     |       |        |        |        |       |       |  |  |  |
|                | 8                       | a)     | Explain the Redlich-Kister method to check the consistency of the given VLE data.                                                                                                                                                                                                                                                                                                                                          | CO6            | PO3                     | 4   |       |        |        |        |       |       |  |  |  |
|                |                         | b)     | Liquids A and B form an azeotrope containing 46.1 mole per cent A at 101.3 kPa and 345 K. At 345 K, the vapor pressure of A is 84.8 kPa and that of B is 78.2 kPa. Calculate the van Laar constants.                                                                                                                                                                                                                       | CO4            | PO3                     | 8   |       |        |        |        |       |       |  |  |  |
|                |                         | c)     | At 318 K and 24.4 kPa, the composition of the system ethanol (1) and toluene (2) at equilibrium is $x_1 = 0.3$ and $y_1 = 0.634$ . The saturation pressures at the given temperature for the pure components are $P_1^s = 23.06$ kPa and $P_2^s = 10.05$ kPa, respectively. Calculate the liquid-phase activity coefficients.                                                                                              | CO4            | PO3                     | 8   |       |        |        |        |       |       |  |  |  |
|                |                         |        | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |
|                | 9                       | a)     | Evaluate the equilibrium constant at 600 K for the reaction $\text{CO (g)} + 2\text{H}_2 \text{ (g)} \rightarrow \text{CH}_3\text{OH (g)}$<br>Given that the Gibbs free energy function for CO, H <sub>2</sub> and methanol at 600 K are respectively -203.81, -136.39 and -249.83 J/mol K. The heats of formation at 298 K of CO (g) and CH <sub>3</sub> OH (g) at 298 K are -110,500 J/mol and -200,700 J/mol.           | CO5            | PO3                     | 10  |       |        |        |        |       |       |  |  |  |
|                |                         | b)     | Derive van 't Hoff equation from Gibbs–Helmholtz equation.                                                                                                                                                                                                                                                                                                                                                                 | CO5            | PO3                     | 10  |       |        |        |        |       |       |  |  |  |
|                |                         |        | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                         |     |       |        |        |        |       |       |  |  |  |
|                | 10                      | a)     | Derive an equation for the standard free energy change using chemical potential relationship<br>$\Delta G^0 = -RT \ln K$                                                                                                                                                                                                                                                                                                   | CO5            | PO3                     | 10  |       |        |        |        |       |       |  |  |  |
|                |                         | b)     | <i>n</i> -Butane is isomerised to <i>i</i> -butane by the action of catalyst at moderate temperatures. It is found that the equilibrium is attained at the following compositions.                                                                                                                                                                                                                                         | CO5            | PO3                     | 10  |       |        |        |        |       |       |  |  |  |
|                |                         |        | <table border="1"> <thead> <tr> <th>Temperature, K</th> <th>Mol %, <i>n</i>-butane</th> </tr> </thead> <tbody> <tr> <td>317</td> <td>31</td> </tr> <tr> <td>391</td> <td>43</td> </tr> </tbody> </table> <p>Assuming that activities are equal to the mole fractions, calculate the standard free energy of the reaction at 317 K and 391 K and the average value of the heat of reaction over this temperature range.</p> | Temperature, K | Mol %, <i>n</i> -butane | 317 | 31    | 391    | 43     |        |       |       |  |  |  |
| Temperature, K | Mol %, <i>n</i> -butane |        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |
| 317            | 31                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |
| 391            | 43                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |     |       |        |        |        |       |       |  |  |  |