

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH5PCCR1

Course: Chemical Reaction Engineering-I

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) A rocket engine burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is cylindrical, 75 cm long and 60 cm in diameter and the combustion process produces 108 kg/s of exhaust gases. If combustion is complete, find the rate of reaction of hydrogen and oxygen.	CO1	PO2	08
		b) For the hydrolysis of a reactant 'A' as per Arrhenius theory, the rate constant at 60°C is 6.698×10^{-3} L/min and the activation energy is 16,200 Cal/mol. Calculate the rate constant at 80°C by collision and transition state theories. What is the percentage difference in rate constants predicted by these two methods?	CO1	PO2	08
		c) Differentiate between the order and molecularity of reactions.	CO1	PO2	04
		UNIT - II			
2	a)	The thermal decomposition of C_2H_6 to ethane, methane, butane, and hydrogen is believed to follow the sequence of reactions as shown below. $C_2H_6 \xrightarrow{k_1} 2CH_3^*$ $CH_3^* + C_2H_6 \xrightarrow{k_2} CH_4 + C_2H_5^*$ $C_2H_5^* \xrightarrow{k_3} C_2H_4 + H^*$ $H^* + C_2H_6 \xrightarrow{k_4} H_2 + C_2H_5^*$ $2C_2H_5^* \xrightarrow{k_5} C_4H_{10}$ Derive the rate equation for the formation of C_2H_4 .	CO2	PO2	14
		b) What are the differences between the elementary and non-elementary reactions? Mention suitable examples.	CO2	PO2	06
	OR				

	3	a)	For an irreversible, bimolecular type II order reaction, $A + B \rightarrow P$, derive an expression in terms of conversion for the rate equation assuming $M = 2$.	CO2	PO2	10														
		b)	Explain the different methods used to analyze the kinetic data.	CO2	PO2	10														
		UNIT - III																		
	4	a)	Derive the design equation for the plug flow reactor.	CO3	PO3	10														
		b)	The liquid phase isomerization of butane was carried out in three reactors connected in series. Conversion achieved in the first reactor MFR is 20%, conversion achieved in the second reactor PFR is 40% and final conversion achieved in the third MFR reactor is 65%. The experimental data is given for your reference.	CO3	PO3	10														
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">$-r_A$</td> <td style="text-align: center;">$\frac{\text{kmol}}{\text{m}^3 \cdot \text{h}}$</td> <td style="text-align: center;">30</td> <td style="text-align: center;">53</td> <td style="text-align: center;">59</td> <td style="text-align: center;">38</td> <td style="text-align: center;">25</td> </tr> <tr> <td style="text-align: center;">X_A</td> <td></td> <td style="text-align: center;">0</td> <td style="text-align: center;">0.2</td> <td style="text-align: center;">0.4</td> <td style="text-align: center;">0.6</td> <td style="text-align: center;">0.65</td> </tr> </table> <p>Estimate the volume of each reactor connected in series for the entry flow rate of 50 kmol/h.</p>	$-r_A$	$\frac{\text{kmol}}{\text{m}^3 \cdot \text{h}}$	30	53	59	38	25	X_A		0	0.2	0.4	0.6	0.65			
$-r_A$	$\frac{\text{kmol}}{\text{m}^3 \cdot \text{h}}$	30	53	59	38	25														
X_A		0	0.2	0.4	0.6	0.65														
			OR																	
	5	a)	Elucidate the graphical procedure for finding the outlet composition from a series of mixed-flow reactors of various sizes.	CO3	PO3	10														
		b)	An aqueous reactant stream (4 mol of A/liter) passes through a mixed flow reactor followed by a plug flow reactor. Find the concentration at the exit of the plug flow reactor, if in the mixed flow reactor, $C_A = 1$ mol/liter. The reaction is second order with respect to 'A' and the volume of the plug flow unit is three times of the mixed flow reactor.	CO3	PO3	10														
		UNIT - IV																		
	6	a)	Formulate equations for instantaneous fractional yield, overall fractional yield, and selectivity in the case of parallel reaction schemes.	CO4	PO2	08														
		b)	Consider the irreversible unimolecular type first-order reaction in series $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ occurring in an MFR. For this reaction, develop the concentration-time relationship. Assume that the feed contains no R and S, and show that $\tau_{m, \text{opt}} = \sqrt{\frac{1}{k_1 k_2}}$.	CO4	PO2	12														
		UNIT - V																		
	7	a)	Define optimum temperature progression. Discuss the optimum temperature progression for an exothermic reversible reaction.	CO4	PO2	10														
		b)	Explain with a neat graph the step-by-step design procedure for an adiabatic operation of a batch reactor.	CO4	PO2	10														

REAPPEAR EXAMS 2023-24