

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

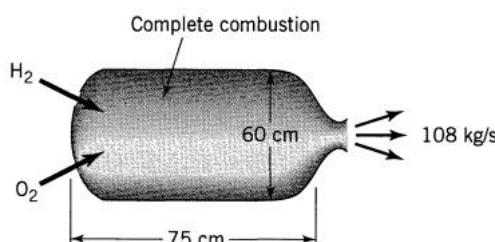
January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Chemical Engineering

Duration: 3 hrs.


Course Code: 23CH5PCCR1 / 22CH5PCCR1

Max Marks: 100

Course: Chemical Reaction Engineering I

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define reaction rate based on various units and list the factors affecting the rate of reaction.	<i>CO1</i>	<i>PO2</i>	07
	b)	Discuss the salient features of collision and transition state theories.	<i>CO1</i>	<i>PO2</i>	06
	c)	Milk is pasteurized if heated to 63 °C for 30 min, but it only needs 15 s to achieve the same result if heated to 74°C. Find the activation energy of this sterilization process.	<i>CO1</i>	<i>PO2</i>	07
OR					
2	a)	Discuss molecularity and order of reaction with suitable examples.	<i>CO1</i>	<i>PO2</i>	04
	b)	Discuss how different variables affect the rate of reaction with suitable examples.	<i>CO1</i>	<i>PO2</i>	06
	c)	A rocket engine burns a stoichiometric fuel mixture (liquid hydrogen) and an oxidant (liquid oxygen). The combustion chamber is cylindrical, 75 cm long, and 60 cm in diameter, and the combustion process produces 108 kg/s of exhaust gases. If combustion is complete, find the hydrogen and oxygen reaction rate.	<i>CO1</i>	<i>PO2</i>	10
<p>Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p>					
UNIT - II					
3	a)	Define an elementary and non-elementary reaction and explain the kinetic models for non-elementary reactions.	<i>CO2</i>	<i>PO2</i>	10
	b)	Experiments show that the reaction between $H_2(g)$ and $I_2(g)$ to produce $HI(g)$ proceeds with a rate	<i>CO2</i>	<i>PO2</i>	10

$$\frac{1}{2} \frac{d[H_2]}{dt} = k [H_2][I_2]$$

Suggest a two-step mechanism that is consistent with this rate.

OR

4 a) The reaction between CO and NO₂ at low temperatures proceeds with the rate:

$$-r_{NO_2} = k[NO_2]^2$$

Suggest a mechanism to explain this rate.

CO2 PO2

10

b) Mention the different methods used to analyze the kinetic data. Explain any one method with help of graphical interpretation.

CO2 PO2

10

UNIT - III

5 a) Develop a design equation of a stirred tank reactor for a constant density system.

CO3 PO3

10

b) The following kinetic data are obtained in a constant volume batch reactor at 273 K using pure gaseous A, and the partial pressure of A is given in mm Hg.

Time, min	0	2	4	6	8	10	12	14	∞
Partial pressure	760	600	475	390	320	275	240	215	150

10

OR

6 a) From the following data, find a satisfactory rate equation for the gas phase decomposition A \rightarrow R + S occurring isothermally in a mixed-flow reactor.

Run Number	1	2	3	4	5
τ, s	0.423	5.10	13.5	44	192
X_A	0.22	0.63	0.75	0.88	0.96

All the runs are conducted with $C_{Ao} = \frac{0.002 \text{ mol}}{l}$, i.e., with the same initial concentration.

CO3 PO3

14

b) The half-life for converting ammonium cyanate into urea at 303 K at initial concentrations of ammonium cyanate of 0.1 mol/l and 0.2 mol/l is 1152 min and 568 min, respectively. Determine the order of the reaction.

CO3 PO3

06

UNIT - IV

7 a) What are the guidelines for the best arrangement of a combination of reactors?

CO4 PO3

08

b) A gas mixture containing 50 mole % A and 50 mole % inert at 10 atm enters a reactor system with a flow rate of 6 L/s at 144 °C. The laboratory measurements of the rate as a function of conversion at 144°C and 10 atm are:

CO4 PO3

12

X_A	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.85
$-r_A \times 10^{-2}$	0.53	0.52	0.5	0.45	0.4	0.33	0.25	0.18	0.125	0.1

If the reaction is carried out in two reactors in series, with 40% conversion in the first reactor and 85 % overall conversion.

Estimate the total volume of the two reactors when

- Mixed flow reactor is used.
- Plug flows reactor is used.

OR

8 a) Explain the graphical method to find the conversion in a series of mixed-flow reactors of different sizes.

CO4

PO3

8

b) Liquid reactant A produces R and S by the following reactions in parallel.

A feed of aqueous A with $C_{A0} = 40 \text{ mol/m}^3$ enters a reactor, reacts to produce R and S, and a mixture of A, R and S leaves the reactor. Find C_S , C_R and τ for 90 % conversion of A in a mixed flow reactor.

CO4

PO3

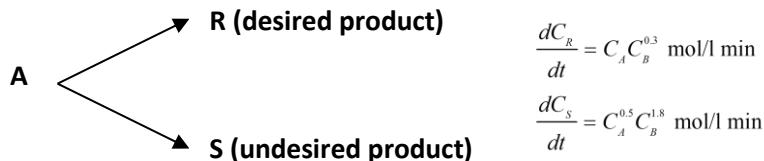
12

UNIT - V

9 a) What is optimum temperature progression? Discuss the optimum temperature progression for irreversible, reversible endothermic, reversible exothermic reactions.

CO5

PO2


12

b) For the competitive liquid-phase reaction: $\frac{dC_R}{dt} = C_A C_B^{0.3} \text{ mol/l min}$

CO5

PO2

08

Find the fraction of impurities in the product stream for 90% conversion of pure A and pure B, each having a concentration of 20 mol/L for (a) PFR and (b) MFR

OR

10 a) What are the instantaneous fractional yield, overall fractional yield, and selectivity in the case of parallel reaction schemes? Explain with equations.

CO5

PO2

08

b) Explicate the general graphical design procedure for a single homogeneous non-isothermal reaction.

CO5

PO2

12
