

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH5PCCR1 / 22CH5PCCR1

Max Marks: 100

Course: Chemical Reaction Engineering-I

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Given the reaction: $2\text{NO}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{N}_2\text{O}_5$, what is the relation between the rates of formation and disappearance of the three reaction components?	CO1	PO2	02
		b)	Differentiate between the order and molecularity of reactions.	CO1	PO2	04
		c)	From basics, prove the following relation. $Vr_A = Wr'_A = Sr''_A = V_s r'''_A = V_r r''''_A$.	CO1	PO2	06
		d)	For the hydrolysis of a reactant 'A' as per Arrhenius theory, the rate constant at 60°C is 6.698×10^{-3} L/min and the activation energy is 16,200 Cal/mol. Calculate the rate constant at 80°C by collision and transition state theories. Determine the percentage difference in rate constants predicted by these two methods.	CO2	PO2	08
OR						
	2	a)	A reaction: $2\text{A} \rightarrow \text{B}$ is carried out in a reactor. Write the rate expression with respect to components A and B, assuming it is a second-order elementary reaction. Give the unit of rate constant.	CO1	PO2	04
		b)	Explain the factors affecting the rate of a chemical reaction for both homogenous and heterogenous phases.	CO2	PO2	06
		c)	A rocket engine burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is cylindrical, 75 cm long and 60 cm in diameter and the combustion process produces 108 kg/s of exhaust gases. If combustion is complete, find the rate of reaction of hydrogen and oxygen.	CO2	PO2	10
UNIT - II						
	3	a)	For an irreversible, bimolecular type II order reaction, $\text{A} + \text{B} \rightarrow \text{products}$ Derive an expression in terms of conversion for the rate equation. Assume that $M=2$.	CO2	PO2	10
		b)	What are the differences between the elementary and non-elementary reactions? Mention suitable examples	CO2	PO2	10

		OR																								
4	a)	<p>The thermal decomposition of C_2H_6 to ethane, methane, butane, and hydrogen is believed to follow the sequence as follows.</p> $C_2H_6 \xrightarrow{k_1} 2CH_3^*$ $CH_3^* + C_2H_6 \xrightarrow{k_2} CH_4 + C_2H_5^*$ $C_2H_5^* \xrightarrow{k_3} C_2H_4 + H^*$ $H^* + C_2H_6 \xrightarrow{k_4} H_2 + C_2H_5^*$ $2C_2H_5^* \xrightarrow{k_5} C_4H_{10}$ <p>Derive the rate equation for the formation of C_2H_4.</p>	CO1	PO2	12																					
	b)	<p>Mention the different methods used to analyze the kinetic data. Explain any one method with help of graphical interpretation.</p>	CO2	PO2	08																					
		UNIT - III																								
5	a)	<p>An aqueous reactant stream (4 mol of A/liter) passes through a mixed flow reactor followed by a plug flow reactor. Find the concentration at the exit of the plug flow reactor if in the mixed flow reactor, $C_A = 1$ mol/liter. The reaction is second order with respect to 'A', and the volume of the plug flow unit is three times of the mixed flow reactor.</p>	CO3	PO3	10																					
	b)	<p>The liquid phase isomerization of butane was carried out in three reactors connected in series. Conversion achieved in the first reactor MFR is 20%, conversion achieved in the second reactor PFR is 40% and final conversion achieved in the third MFR reactor is 65%. The experimental data is given for your reference.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">$-r_A$</td> <td style="text-align: center;">kmol</td> <td style="text-align: center;">30</td> <td style="text-align: center;">53</td> <td style="text-align: center;">59</td> <td style="text-align: center;">38</td> <td style="text-align: center;">25</td> </tr> <tr> <td style="text-align: center;">$m^3.h$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td style="text-align: center;">X_A</td> <td></td> <td style="text-align: center;">0</td> <td style="text-align: center;">0.2</td> <td style="text-align: center;">0.4</td> <td style="text-align: center;">0.6</td> <td style="text-align: center;">0.65</td> </tr> </table> <p>Estimate the volume of each reactor connected in series for the entry flow rate of 50 kmol/h.</p>	$-r_A$	kmol	30	53	59	38	25	$m^3.h$							X_A		0	0.2	0.4	0.6	0.65	CO3	PO3	10
$-r_A$	kmol	30	53	59	38	25																				
$m^3.h$																										
X_A		0	0.2	0.4	0.6	0.65																				
		OR																								
6	a)	<p>Elucidate the graphical procedure for finding the outlet composition from a series of mixed-flow reactors of various sizes.</p>	CO3	PO3	10																					
	b)	<p>Derive the design equation for the plug flow reactor.</p>	CO3	PO3	10																					
		UNIT - IV																								
7	a)	<p>A series reaction is assumed to be taking place as: $A \xrightarrow{k_1} R \xrightarrow{k_2} S$. The desired product is R. Obtain an expression for $C_R \text{ max}/C_A$ when $k_1 = k_2$.</p>	CO4	PO3	12																					
	b)	<p>What are the instantaneous fractional yield, overall fractional yield, and selectivity in the case of parallel reaction schemes? Explain with equations.</p>	CO4	PO3	08																					

OR					
8	a)	Consider the irreversible unimolecular type first-order reaction in series $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ occurring in an MFR. For this reaction, develop the concentration-time relationship. Assume that the feed contains no R and S, and show that $\tau_{m, \text{opt}} = \sqrt{\frac{1}{k_1 k_2}}$.	<i>CO4</i>	<i>PO3</i>	12
	b)	A series-parallel reaction $\begin{array}{c} A + B \xrightarrow{k_1} R \\ R + B \xrightarrow{k_2} S \end{array}$ occurs in a tubular reactor with the rate constants $k_1 = 3k_2$. Find the concentration of R and S leaving the reactor for 50% conversion of A, when A is introduced at 100 mol/L and no R and S are present in the feed.	<i>CO4</i>	<i>PO3</i>	08
UNIT - V					
9	a)	A reversible elementary reaction of type $A \rightleftharpoons R$ has the following relations for k_1 and k_2 . $k_1 = \exp(20 - 1200/T)$, and $k_2 = \exp(60 - 2400/T)$. Find the reaction temperature to achieve 77% conversion of A at equilibrium.	<i>CO5</i>	<i>PO2</i>	10
	b)	What is optimum temperature progression? Discuss the optimum temperature progression for an exothermic reversible reaction.	<i>CO5</i>	<i>PO2</i>	10
OR					
10	a)	Explain with a neat graph the step-by-step design procedure for an adiabatic operation of a batch reactor.	<i>CO5</i>	<i>PO2</i>	10
	b)	Between 0 and 100°C, determine the equilibrium conversion for the elementary aqueous reaction. $A \rightleftharpoons \xrightarrow{k_2} R$. Data: $\Delta G_{298}^0 = -14,130 \frac{J}{mol}$, $\Delta H_{298}^0 = -75,300 \frac{J}{mol}$ and $C_{PA} = C_{PB} = \text{constant}$. Present the results of the analysis in a temperature-conversion chart.	<i>CO5</i>	<i>PO2</i>	10
