

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH5PELA3 / 22CH5PELA3

Max Marks: 100

Course: Optimization of Chemical Processes

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a	List the application of optimization in different chemical processes.	CO1	PO2	06
	b	A poster contains 300 cm ² of printed matter with margins of 6 cm at the top and bottom and 4 cm at each side. Find the overall dimensions that minimize the total area of the poster.	CO1	PO2	06
	c	Company was proposed with two plans to supply water for an industry. Plan A requires a pipeline costing \$160,000 with annual operation and recurring costs of \$2200, and an estimated life of 30 years with no salvage. Plan B requires a flume costing \$34,000 with a life of 10 years, a salvage value of \$5600, and annual operation and recurring cost of \$4500 plus a ditch costing \$58,000, with a life of 30 years and annual costs for maintenance of \$2500. Using an interest rate of 12 percent, compare the net present values of the two alternatives and explain the best plan.	CO1	PO2	08
OR					
2	a)	Apply the concept of optimization to find the optimal length to diameter ratio (L/D) of a pressure vessel that minimizes capital cost of the vessel.	CO1	PO2	08
	b)	Explain the six steps of optimization with an example.	CO1	PO2	06
	c)	Elucidate the scope of optimization.	CO1	PO2	06
UNIT - II					
3	a)	Analysis following functions list below to check if its continuous or not. Show the range of x for which the functions are continuous. i. $f(x) = \frac{1}{x}$ ii. $f(x) = \ln(x)$	CO2	PO7	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain the Newton's and quasi newtons method to optimize one dimensional function. List all the relevant equations applied in both the methods.	CO2	PO7	10
		OR			
4	a)	Evaluate the given objective functions are convex or concave in nature i. $f(x_1, x_2) = (x_1 - x_2)^2 + x_2^2$ ii. $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ iii. $f(x_1, x_2) = e^{x_1} + e^{x_2}$	CO2	PO7	10
	b)	Laboratory filtration study is to be carried out at constant rate. The filtration time is expressed as $t_f = \beta \times \left[\frac{\Delta P_c \times A^2}{\mu M^2 C} \right] \times x_c \times e^{(-ax_c+b)}$ Where, t_f = time to build the filter cake, min; $\beta = 3.2 \times 10^{-8} \text{ kg/m}^2$ $C = 0.01 \text{ kg/kg}$ of filtrate, $a = 3.643$, $b = 2.680$ and x_c is the mass fraction solids in the dry cake. Evaluate the max time for filtration as a function of x_c by Newtons method.	CO2	PO7	10
		UNIT - III			
5	a)	Solve the function given below using geometry of linear program method. Plot the given constraints and located the optimized maximum value of the given function. Maximize: $f = x_1 + 3x_2$ Subjected to three constraints: Constraint 1: $-x_1 + x_2 \leq 1$ Constraints 2: $x_1 + x_2 \leq 2$; and Constraint 3: $x_1 \text{ & } x_2 \geq 0$.	CO3	PO2	10
	b)	Solve the following constrained optimization problem applying Simplex method. $\text{Maximize } x_1 + 2x_2 + x_3$ Subject to $2x_1 + x_2 - x_3 \leq 2$ $2x_1 - x_2 + 5x_3 \leq 6$ $4x_1 + x_2 + x_3 \leq 6$ $x_1, x_2 \text{ and } x_3 \geq 0$	CO3	PO2	10
		OR			
6	a)	Solve the following constrained optimization problem applying simplex method Minimize $f = 3x_1 + x_2 - x_3$ Subjected to $x_1 - 2x_2 + x_3 \leq 11$ $4x_1 - x_2 - 2x_3 \leq 3$ $-2x_1 - 0x_2 + x_3 \leq 1$ $x_1, x_2, x_3 \geq 0$	CO3	PO2	10

	b)	Consider the linear program and plot the geometry of the linear program based on the objective function and constraints given to find optimal value to maximize the function Maximize $f = x_1 + 2x_2$ Subjected to $-x_1 - 3x_2 \leq 10$ $x_1 + x_2 \leq 6$ $x_1, x_2 \geq 0$	CO3	PO2	10
		UNIT - IV			
7	a)	Explain the steps involved in Optimization of flow rates in a Liquid-Liquid Extraction column. List the objective function considering a suitable economical model and all relevant equations as constraints.	CO4	PO6	10
	b)	Formulate an objective function and constrained equations for optimal design and operation of a conventional staged distillation column by applying suitable material and energy balance. List all the assumptions in detail.	CO4	PO6	10
		OR			
8	a)	Formulate the objective function and the constraints equations to optimize the heat transfer area required for a shell and tube heat exchanger. List all the assumptions made to optimize the shell and tube heat exchanger.	CO4	PO6	10
	b)	Develop objective function of optimal recovery of waste heat and find the optimal temperature of working fluid. Data given: $U = f$ (working fluid and operating temp), C_A = cost per unit area of the heat exchanger, r = annual capital investment, C_b = annual capital cost for boilers, C_{op} = operating cost, η = overall system efficiency, t = operating time in hrs, Δw = power from the boiler, and C_H = value of the power (\$/ kW. h).	CO4	PO6	10
		UNIT - V			
9	a)	Consider a Haber process for synthesis ammonia. The temperature at which the reaction rate is a maximum decrease as the conversion increases. Apply the energy balance and mass balance for each component considering suitable reaction in the ammonia reactor to optimize the reactor design.	CO4	PO6	10
	b)	Find the optimal inter-stage pressure of a gas compression system for minimum work.	CO4	PO6	10
		OR			
10	a)	Find optimal diameter of pipe in a flow system for turbulent flow. Assume friction factor $f = 0.046Re^{-0.2}$	CO4	PO6	10
	b)	Illustrate the material and energy balances applied to optimize the gas transmission line for gas-oil processing industry.	CO4	PO6	10
