

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH5DELB2

Course: Optimization of Chemical Processes

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 21.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Explain the scope and hierarchy of optimization. **06**
 b) Illustrate the six steps used to solve optimization problems. **08**
 c) Differentiate between payback period and net present value in detail. **06**

UNIT - II

2 a)
$$f(x) = \frac{1}{17x} + 11x$$

$$f(x) = \ln(2x) + 5x^2$$

Check for continuity of the above functions and its first derivative.

b) Analyze for convexity and concavity of the following functions. **10**

$$f(x) = 3x^2 + 2x + 1$$

$$f(x) = -7x^3 + 2x^2 + 2$$

$$f(x, y) = 2x^2 + 3xy + 2y^2 + 3x - 2y + 5$$

UNIT - III

3 a) Solve the following constrained optimization problem applying Simplex method. **10**

$$\text{Maximize } 10x_1 + 15x_2 + 20x_3$$

Subject to

$$2x_1 + 4x_2 + 6x_3 \leq 24$$

$$3x_1 + 9x_2 + 6x_3 \leq 30$$

$$x_1, x_2 \text{ and } x_3 \geq 0$$

b) Solve the following constrained optimization problem. **10**

$$\text{Minimize } 3x_1 + 2.5x_2$$

Subject to

$$2x_1 + 4x_2 \geq 40$$

$$3x_1 + 2x_2 \geq 50$$

$$x_1, x_2 \geq 0$$

UNIT - IV

4 a) Develop the objective function and constrained equations for optimal design and operation of a conventional staged distillation column. **10**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Find optimal number of stages of multi-effect evaporator for minimum overall cost. 10

OR

5 a) What are the inequality constraints in liquid-liquid extraction column? 08

b) Develop the objective function of the optimal recovery of waste heat and find the optimal temperature working fluid. 12

UNIT-V

6 a) Illustrate the effect of any five-factors considered for optimal design of gas transmission network. 05

b) Find the optimal inter-stage pressure of a gas compression system for minimum work. 10

c) Illustrate the effect of any five-factors considered for optimal design of a gas transmission network. 05

OR

7 a) Explain the significance of water production per filter run using the Lettermann relation in economic operation of a fixed-bed filter. 08

b) Derive an energy balance equation applied for optimal design of an ammonia reactor and list the assumptions made. 12
