

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH5DELB2

Max Marks: 100

Course: Optimization of Chemical Processes

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																				
1	a)	Describe the six steps to solve optimization problem.	CO1	P O2	10																				
	b)	A cylindrical can with volume at least V_0 is to be designed in such a way as to minimize the total cost of the material in a box of 12 cans, arranged in a 3×4 pattern. The cost is proportional to surface area of cans and box. It is given as , $\text{Cost} = C_1S_1 + C_2S_2$ where S_1 is the surface area of the 12 cans and S_2 is the surface area of the box. The constant coefficients C_1 and C_2 are positive. Another constraint is that no dimension of the box can exceed a given value D_0 . Formulate the optimization problem, considering the objective function as cost function.	CO1	PO2	10																				
OR																									
2	a)	Elaborate on i)Net present value ii)Initial rate of return iii) Payback period iv) Time value of money	CO1	PO2	10																				
	b)	For the following data, how much premium petrol and regular petrol should be produced to maximize the profit? Show the stepwise procedure of problem formulation.	CO1	PO2	10																				
<table border="1"> <thead> <tr> <th>Crude oil</th> <th>Octane number</th> <th>Cost (\$/b)</th> <th>Availability (b)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>86</td> <td>17</td> <td>20000</td> </tr> <tr> <td>2</td> <td>88</td> <td>18</td> <td>15000</td> </tr> <tr> <td>3</td> <td>92</td> <td>20</td> <td>15000</td> </tr> <tr> <td>4</td> <td>96</td> <td>23</td> <td>10000</td> </tr> </tbody> </table>			Crude oil	Octane number	Cost (\$/b)	Availability (b)	1	86	17	20000	2	88	18	15000	3	92	20	15000	4	96	23	10000			
Crude oil	Octane number	Cost (\$/b)	Availability (b)																						
1	86	17	20000																						
2	88	18	15000																						
3	92	20	15000																						
4	96	23	10000																						

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

			Petrol	Octane number	Selling price(\$/b)	Maximum daily demand (b)			
			Regular	89	19.5	35,000			
			Premium	93	22	23,000			
UNIT - II									
3	a)	Determine the stationary points of function: $12x^5 - 45x^4 + 40x^3 + 5$ and classify them as minima, maxima or saddle point.					CO2	PO3	10
	b)	Show that the function $f(x) = \exp(x_1) + \exp(x_2)$ is strictly convex.					CO2	PO3	10
OR									
4	a)	Explain the algorithm of interval halving method of region elimination					CO2	PO3	10
	b)	Consider the minimization of the function $f(x) = 2 - 4x + ex$ in the interval $[0.5, 2.5]$ using Dichotomous search method. Use $\epsilon = 0.01$. What is the midpoint of the interval of uncertainty after 3 iterations					CO2	PO3	10
UNIT - III									
5	a)	A cylindrical refrigeration tank of volume 50 m^3 has to be built. Two circular ends cost Rs.500 per m^2 , the cylindrical wall costs Rs. 300 per m^2 and the cost of refrigeration is Rs. 5000 per m^2 over the life of the tank. Find the diameter of the tank that will minimize the total cost using bisection method. Consider that the minimum is bracketed in the range $[1, 6]$ and perform 3 iterations.					CO3	PO3	10
	b)	Elaborate on Simplex method of solving linear programming.					CO3	PO3	10
OR									
6	a)	Explain the knapsack and traveling salesman problem of mixed integer programming.					CO3	PO3	10
	b)	Maximize: $f = 86y_1 + 4y_2 + 40y_3$ Subject to: $774y_1 + 76y_2 + 42y_3 \leq 875$ by branch and bound analysis					CO3	PO3	10
UNIT - IV									
7	a)	Enumerate the optimum design of multiple effect evaporators .					CO4	PO3	10

		b)	Describe the optimal design and operation of staged distillation columns.	CO4	PO3	10
OR						
	8	a)	Explain the optimization of liquid-liquid extraction processes.	CO4	PO3	10
		b)	Explain the optimization of staged distillation columns.	CO4	PO3	10
UNIT - V						
	9	a)	Illustrate the procedure to determine the optimum diameter of pipe in a fluid flow system.	CO5	PO3	10
		b)	Summarize the optimization procedure of thermal cracker via linear programming.	CO5	PO3	10
OR						
	10	a)	Illustrate the optimization of ammonia reactor.	CO5	PO3	10

B.M.S.C.E. - ODD SEM 2024-25