

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Semester: V

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH5DCMT2

Max Marks: 100

Course: Mass Transfer-II

Date: 12.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) Define and discuss the following **06**
i. Point efficiency
ii. Murphree efficiency
iii. Minimum liquid-gas rate ratio for absorber
b) What is the meaning of HETP? How one can estimate its value? Give **04** its application.
c) Ammonia is to be removed from a mixture of 20% ammonia and 80% air by counter-current scrubbing with water at 1 atm and 20 °C. Evaluate the minimum solvent rate if 99% of ammonia is to be removed and also the theoretical stages for actual absorption with 1.2 times the minimum solvent rate. The rate of flow of the mixture is 3500 kg/h.

Data:

Partial pressure of ammonia, mm Hg	12	18	32	50	70	166
g of ammonia/10 g of water	0.2	0.3	0.5	0.75	1	2

OR

2. a) Discuss the factors to be considered while choosing between tray towers and packed towers. **06**
b) What are the methods of evaluating the height of packed tower using HTU and NTU values? Explain. **06**
c) Explain the construction of tray tower with the help of a neat sketch. **08**

UNIT - II

3. a) Steam is supplied into a still containing nitrobenzene with minute water soluble impurities at the total pressure is 130 mm Hg. Vapors leaving the still are condensed and separated in a separating funnel. Estimate the temperature of boiling and the composition of the distillate. Find the economy of steam. Saturation pressure data of major components is given below. **10**

Saturation pressure, mm Hg	100	50	30	26
Temperature, °C	Chlorobenzene	70.4	53.7	42.7
	Water	51.7	38.5	29.9

b) Explain the equilibrium flash vaporization and differential distillation techniques of separation of components from a solution. **10**

OR

4. a) Discuss the location of q-line for various feed conditions. Derive the feed line equation. **10**

b) A solution of 60% benzene and rest toluene at saturated liquid state is to be continuously distilled to produce a distillate with 90% benzene and residue with 5% benzene. The column operates at a pressure of 1 atm. A reflux ratio of 2.1 is to be maintained. How many theoretical plates must the column have? All the percentages are on mole basis.
VLE data:

x	0	0.10	0.20	0.30	0.50	0.60	0.70	0.80	0.90	1
y	0	0.20	0.38	0.51	0.71	0.78	0.85	0.91	0.96	1

UNIT - III

5. a) Explain the stepwise procedure for calculating number of theoretical trays required for separation of components from an ideal binary system using Panchon-Savarit method. **10**

b) What is the principle governing the molecular distillation? Explain the process with applications. **05**

c) Differentiate between the extractive distillation and azeotropic distillation. **05**

UNIT - IV

6. a) Specify the factors governing the selection of solvent for extraction operation. **04**

b) With a neat diagram, explain the working and construction of rotating disc contactor used in industries. **06**

c) A multistage cross current extraction system is used to extract dioxane from a binary mixture of dioxane and water using benzene as a solvent. The aqueous feed is available at 150 kg/h containing 20 % by weight of dioxane. The system has 3 stages and 120 kg/h of fresh solvent is to be used in each stage. The solvent feed contains 2 % dioxane. Assuming that each stage is an ideal one, estimate the final dioxane content in water. The miscibility of benzene in water may be neglected.
The solubility of dioxane in water and benzene at equilibrium is given below.

Weight % of dioxane in water	2.8	5.1	18.9	25.2	33.06
Weight % of dioxane in benzene	3.1	5.23	22.49	32.03	46.35

UNIT - V

7. a) Explain the typical equilibrium diagrams for leaching with the help of neat diagrams. **06**

b) With a neat line diagram, explain the working of any one of the leaching equipment employed for separation used in industries. **08**

c) Explain the single stage leaching operation. How do you estimate the quantity of the leaching solvent required using the equilibrium data? **06**
