

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH5PCMT2

Course: Mass Transfer-II

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Compare and contrast between the tray and packed towers for liquid-gas contact operations.	CO2	PO3	10
	b)	Carbon disulfide (CS ₂) is to be recovered from the CS ₂ -nitrogen mixture by scrubbing it with solvent oil in a multi-stage counter-current absorber. The gas mixture entering the system has a partial pressure of CS ₂ equal to 50 mmHg. The feed mixture is at 20 °C and 101.3 kPa and flows at a rate of 500 m ³ /h. It is required to recover 93% of CS ₂ present in the feed gas. The solvent oil has a molecular weight of 180 kg/kmol and is free of CS ₂ and forms an ideal solution with it. The vapour pressure of CS ₂ at 20°C is 346 mmHg. The Murphree stage efficiency is 80% based on gas composition. Generate the equilibrium data and plot the equilibrium curve for this system.	CO3	PO4	10
OR					
2	a)	What are HETP and HTU in gas-liquid contact equipment? Explain their significance.	CO1	PO2	04
	b)	What are flooding, weeping, and priming?	CO2	PO3	06
	c)	It is desired to absorb 90% of acetone in a gas containing 1 mol % acetone in the air in a counter-current stage tower. The total inlet gas flow to the tower is 30 kmol/h and the total inlet pure water flow to be used to absorb the acetone is 90 kmol/h. The process is to operate isothermally at 300 K and a total pressure of 101.3 kPa. The equilibrium relation for acetone in gas-liquid is $y_A = 2.53 x_A$. Determine the number of theoretical stages required for the separation.	CO3	PO4	10
UNIT - II					
3	a)	What is simple distillation? Derive Rayleigh equation.	CO1	PO2	08
	b)	Elucidate the importance of VLE data in distillation.	CO1	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	What are the differences between flash distillation and steam distillation?	CO4	PO2	06												
		OR															
4	a)	State the assumption of the McCabe-Thiele method for the determination of the number of stages in a distillation column.	CO3	PO4	05												
	b)	What is reflux ratio? Based on the feed conditions, locate the slope of the q-line on an x-y plot.	CO2	PO3	05												
	c)	2000 kg/h of a mixture of CS_2 and CCl_4 containing 67 mole % CS_2 is to be fractionated in a bubble cap column to give a distillate containing 97 mole % and a residue containing 9.6 mole % mole volatile component, respectively. The feed enters the column at its bubble point. The reflux ratio is 2.5 times the minimum reflux ratio suggested. The average molecular weight of feed is 101.74 kg/kmol. Determine the number of plates required using the data given below.	CO3	PO4	10												
		<table border="1"> <tr> <td>Mole fraction of CS_2 in liquid, x</td> <td>0</td> <td>0.16</td> <td>0.44</td> <td>0.83</td> <td>1.0</td> </tr> <tr> <td>Mole fraction of CS_2 in vapour, y</td> <td>0</td> <td>0.3</td> <td>0.68</td> <td>0.93</td> <td>1.0</td> </tr> </table>	Mole fraction of CS_2 in liquid, x	0	0.16	0.44	0.83	1.0	Mole fraction of CS_2 in vapour, y	0	0.3	0.68	0.93	1.0			
Mole fraction of CS_2 in liquid, x	0	0.16	0.44	0.83	1.0												
Mole fraction of CS_2 in vapour, y	0	0.3	0.68	0.93	1.0												
		UNIT - III															
5	a)	Explain the azeotropic and extractive distillation with an example.	CO4	PO2	10												
	b)	Discuss different types of reboiler arrangements for the distillation columns with figures.	CO4	PO2	10												
		OR															
6	a)	Describe the Ponchon Savarit method to determine number of stages with a neat graphical diagram.	CO 2	PO 3	10												
	b)	Explain the vacuum and molecular distillation processes.	CO 2	PO3	10												
		UNIT - IV															
7	a)	A multi-stage cross-flow extraction system is used to extract dioxane from a binary mixture of dioxane and water using benzene as a solvent. The aqueous feed is available at 150 kg/h containing 20 wt. % dioxane. The system has three stages, and 120 kg/h of fresh solvent is to be used in each stage. The solvent feed contains 2 wt. % dioxane. Considering each stage to be an ideal stage, determine the final content of dioxane in water. The miscibility of benzene in water may be neglected. The solubility of dioxane in water and benzene at equilibrium is given below.	CO3	PO4	10												
		<table border="1"> <tr> <td>Wt. % dioxane in water</td> <td>5.1</td> <td>18.9</td> <td>25.0</td> </tr> <tr> <td>Wt. % dioxane in benzene</td> <td>5.2</td> <td>22.5</td> <td>32</td> </tr> </table>	Wt. % dioxane in water	5.1	18.9	25.0	Wt. % dioxane in benzene	5.2	22.5	32							
Wt. % dioxane in water	5.1	18.9	25.0														
Wt. % dioxane in benzene	5.2	22.5	32														
	b)	With the help of a neat sketch, explain the working principle of a rotating disc extractor.	CO4	PO2	10												
		OR															
8	a)	What are the desirable characteristics of an industrial solvent used for liquid-liquid extraction?	CO2	PO3	10												
	b)	Explain the working of a three-stage counter current mixer settler cascade for extraction.	CO2	PO3	10												

UNIT - V						
9	a)	With the help of neat diagrams, explain the typical equilibrium diagrams for leaching operation.	<i>CO4</i>	<i>PO2</i>	10	
	b)	Explain the working and construction of any two industrial leaching equipment with a diagram.	<i>CO2</i>	<i>PO3</i>	10	
OR						
10	a)	Develop the design calculation for multistage crosscurrent leaching. Present its graphical representation.	<i>CO3</i>	<i>PO4</i>	10	
	b)	Outline the operations of Bollman extractor with a neat diagram. Enlist its advantages.	<i>CO4</i>	<i>PO2</i>	10	

B.M.S.C.E. - ODD SEM 2024-25