

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH5DCPCE

Course: Process Control Engineering

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 19.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Demonstrate the process by which we can determine the time constant of any first order system with the help of a specific example. **10**

b) Derive the impulse responses of a first order system. Explain the response with the aid of the response plot. **10**

UNIT - II

2 a) Justify the representation of a U-tube manometer by a second order system. Mention the assumptions made. **10**

b) A step change of magnitude 4 is introduced into a system having the transfer function.

$$Y(s) / X(s) = 10 / [s^2 + 1.6s + 4]$$
i) Plot the response as a function of time.
ii) Determine the rise time.
iii) Determine the response time. **10**

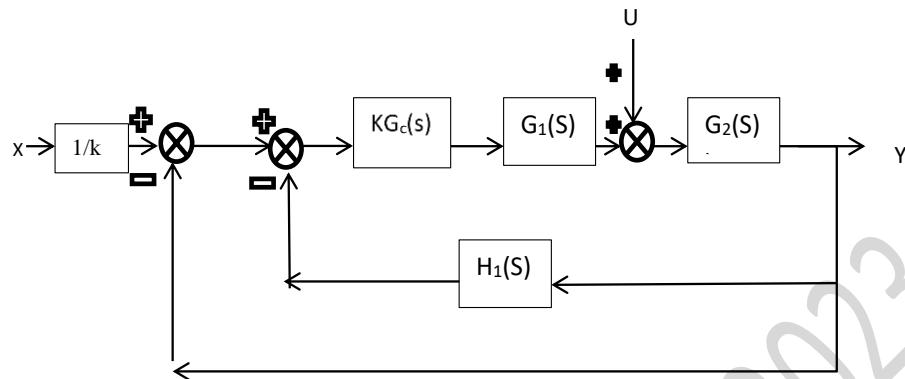
OR

3 a) Derive the step response of an under-damped second order system. **10**

b) Describe the transportation lag with a suitable example. Derive its transfer function. Enlist the approximations for this transfer function. **10**

UNIT - III

4 a) Differentiate servo and regulator control. List two specific applications of each. **05**


b) With the help of a neat sketch, explain the function of a valve positioner. **05**

c) With the help of the relevant transfer function derivation and response plot, illustrate the significance of derivative time of a proportional integral (PD) controller. **10**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

5 a) Determine $Y(s)/X(s)$ for the control system shown in the figure below:

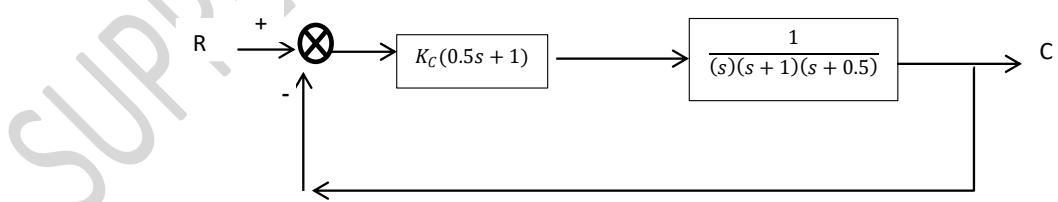
10

b) Illustrate with the help of the relevant derivation and response sketches, how we can manipulate the response of a first order system for load change using PI control. 10

UNIT - V

6 a) Define gain margin and phase margin with the necessary sketches. 06

b) Explain Bode stability criterion. 04


c) Plot the root locus for the open loop transfer function. 10

$$G(s) = K (s+1) / \{s^2 (s+9)\}$$

OR

7 a) For the control system shown below, determine the following: 10

- i) Value of controller gain which causes instability.
- ii) Location of the roots on the imaginary axis.

b) How is Ziegler Nichols tuning done? Explain in detail with the help of the table of tuning parameters. 10
