

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH5DCPCE

Course: Process Control Engineering

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 23.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Derive a response equation considering a I-order system for a sinusoidal input and draw the response curve. Also, compare the frequency, amplitude and phase angle of the input and response curves. **10**

b) An aqueous solution is mixed in a tank. The density of the solution is 900 kg/m³. The feed rate is 1.5 m³/min and the volume of the tank is 1.5 m³. The steady state concentration of the solution is 0.03 k mol / m³. The inlet concentration of the feed is suddenly increased to 0.08 k mol/m³. Calculate the outlet concentration of the solution for t = 0.55 min and t = 1 min. **10**

UNIT - II

2 a) Derive the response equation of U-tube manometer for a unit step change in input when the system is over-damped. **08**

b) Comment on the value of damping ratio, nature of the roots and the corresponding type and response of second order systems. **06**

c) Obtain an expression for impulse response of a second order critically damped system. **06**

OR

3 a) The characteristics of a particular instrument is represented by the equation: **08**
 $100 \frac{d^2Y}{dt^2} + 3.2 \frac{dY}{dt} + 4 Y = 20 X$ with $Y(0) = Y'(0) = 0$. Find its transfer function. Identify the time constant, damping coefficient and gain.

b) A control system has the transfer function $G(s) = 5/(25 s^2 + 0.8 s + 1)$. **12**
 Find the response $Y(t)$, if $X(t) = 6 u(t)$; draw a sketch of $Y(t)$. Does the response show a maximum and period of oscillation? If so, estimate and indicate their numerical values in the sketch

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

4 a) Write the basic equation relating controller output with error signal. **06**
Proportional controller
i) Proportional Derivative controller
ii) Proportional Integral Derivative controller

b) A PID controller is subjected to sinusoidal change in error, $A \sin \omega t$. Sketch the response of the controller.
Data: $\tau_I = 60 \text{ sec}$, $\tau_D = 30 \text{ sec}$, $K_c = 4$, $A = 5^0 \text{C}$, $\omega = 0.3 \text{ rad/sec}$.

c) What is an actuator? List the various types of actuators that are used in automatic process control. **04**

UNIT - IV

5 a) Draw the block diagram of a positive feedback servo problem labelling all the components. Also, derive the transfer function of the same. **08**

b) The major elements of a closed loop control system is having following transfer functions

$$G_p(s) = \frac{2.5}{(s+1)(2s+1)}$$

$$G_c(s) = K_c$$

Transfer function for the rest of the components in the loop are unity. All time constants are in minutes. Determine the transient response for a unit step input in set point at a controller gain that made the system critically damped.

UNIT - V

6 a) Explain the procedure to construct the Routh Array and finding the roots on the imaginary axis. **10**

b) Given the Characteristic equation,
 $s^8 + 2s^7 + 8s^6 + 12s^5 + 20s^4 + 16s^3 + 16s^2 = 0$, Construct the Routh array and comment on the stability and location of roots on s-plane. **10**

OR

7 a) A feedback transfer system has open loop transfer function **10**
 $G(s) = \frac{K(s+1)}{s(s+2)(s+3)(s+5)}$. Sketch the root locus.

b) Give step wise procedure of Ziegler-Nichols tuning technique for feedback controllers. **10**
