

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

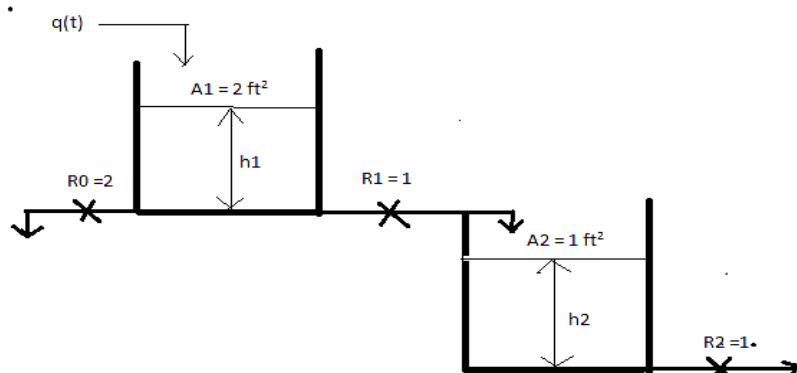
Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH5PCPCE

Course: Process Control Engineering

Semester: V


Duration: 3 hrs.

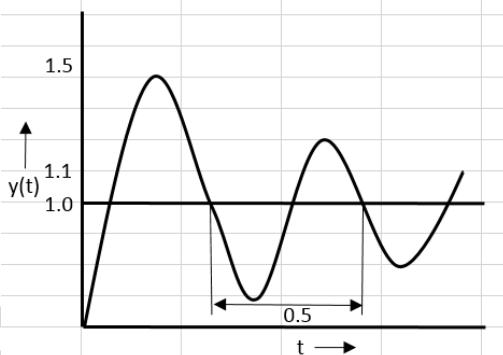
Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Develop the transfer function for mercury in glass thermometer. State all the assumptions made and also plot the response curve by considering a step input and comment on the result.	CO1	PO2	10
	b)	Obtain the transfer function relating liquid level and inlet flow rate in a tank listing all the assumptions made for a system offering linear resistance. How do you modify the same for a nonlinear relationship between the outlet flow rate and liquid level in the tank?	CO1	PO2	10
OR					
2	a)	A thermometer having first order dynamics is placed in a temperature bath at 45°C. After the thermometer reaches the equilibrium with the bath, the bath temperature is subjected to sinusoidal forcing function about its average temperature of 45°C with an amplitude of 15°C. If the period of oscillation is 30 sec/cycle and the time constant of the thermometer is 10 second, determine the following: i. Maximum and minimum temperatures indicated by the thermometer ii. Amplitude ratio iii. Phase lag in seconds	CO2	PO3	10
	b)	Starting from first principles, derive the transfer functions $H_1(s)/Q(s)$ and $H_2(s)/Q(s)$ for the liquid level system shown in the figure. The resistances are linear and $R_1 = R_2 = 1$. Note that two streams are flowing from tank 1, one of which flows into tank 2. You are expected to give numerical values of the parameters in the transfer functions.	CO1	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Note: $A_1 = 2 \text{ ft}^2$; $A_2 = 1 \text{ ft}^2$, $R_0 = 2$, $R_1 = 1$, and $R_2 = 1$ for the above diagram.


UNIT II

3 a) Derive the transfer function between ΔP and manometer reading for a U tube manometer. State all the assumptions made

CO1 PO2 12

b) The experimental unit step response of a second order element shows a maximum value of 1.5, a second maximum of 1.1, an ultimate value of 1, and a cycle period of 0.5 seconds. Determine the damping parameter, and the time constant of the element.

CO2 PO3 08

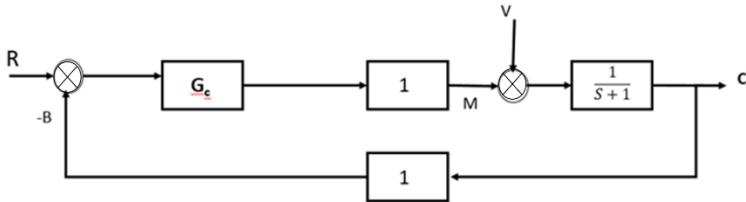
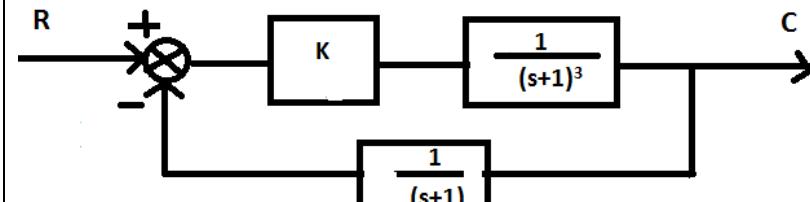
OR

4 a) Obtain an expression for response of a critically damped second order system, when the system is given

- i) A step input
- ii) An impulse input

CO2 PO3 12

b) Explain the following with a neat sketch:



- i) Overshoot
- ii) Decay ratio
- iii) Rise time
- iv) Response time
- v) Period of oscillation

CO2 PO3 08

UNIT III

5 a) Differentiate open loop and closed loop control system with example.

CO1 PO2 4

	b)	Obtain the transfer function and plot the response curves for a linear input in error in the case of proportional-derivative controller.	CO3	PO4	6
	c)	Draw the block diagram of a positive feedback servo problem labeling all the components. Also, derive the transfer function of the same.	CO1	PO2	10
UNIT - IV					
6	a)	<p>For the closed loop control system, show that the P controller does not provide ideal control for regulator problem but PI controller is ideal control for regulator problem.</p>	CO3	PO4	12
	b)	Compare servo and regulator control modes. Enlist their applications.	CO1	PO2	08
UNIT - V					
7	a)	<p>For the control system given,</p> <ol style="list-style-type: none"> Determine the value of K above which the system is unstable <p>For the value of K for which the system is on the threshold of instability, determine the roots of the characteristic equation that lies on the imaginary axis</p>	CO4	PO4	08
	b)	<p>For the open loop transfer function</p> $G(s) = \frac{K}{s(s + 5)(s + 10)}$ <p>Sketch the root locus diagram.</p>	CO4	PO4	12
