

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code:19CH5DCTR

Course: Transport Phenomena

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) State the Fourier's law of heat conduction and Fick's law of diffusion. **06**

b) A stainless steel (SS) panel of area $A=1000 \text{ mm}^2$ and thickness $Y=0.0064 \text{ m}$, was found to conduct heat at a rate of 0.3 W at steady state with temperatures $T_0=25^\circ\text{C}$ and $T=60^\circ\text{C}$ imposed on the two surfaces.

- Calculate the thermal conductivity of the SS material at 55°C .
- If the metal panel is replaced by brass material of same thickness as SS metal panel, conducts the same heat transfer rate of 3 W , with the thermal conductivity of the brass panel is 103.74 W/mK estimate the temperature difference in the brass panel.

c) What is the effect of temperature on thermal conductivity? **06**

UNIT - II

2. a) A Newtonian fluid is flowing through a circular pipe due to pressure difference. The flow is under steady state, laminar flow condition with constant density and viscosity in a circular tube of length (L) and radius (R). Find the average and maximum velocity. **12**

b) Oil is flowing in a laminar region in a $1.27 \times 10^{-2} \text{ m}$ diameter tube at the rate of 22.72 L/min . The oil viscosity is $250 \times 10^{-3} \text{ Ns/m}^2$ and its density is 958 kg/m^3 . Calculate

- The pressure drop per meter of the pipe length
- Wall Stress in N/m^2
- The velocity at the center of the tube

08

OR

3. a) A non-Newtonian fluid is flowing through a circular vertical tube due to pressure difference of length (L) and radius (R). Derive an expression for the shear stress and the maximum velocity & mass flow rate. **14**

b) A Newtonian liquid of viscosity μ is 0.1 N s/m^2 is flowing through a pipe. As a result of a process change a small quantity of polymer is added to the liquid and this causes the liquid to exhibit non-Newtonian characteristics; its rheology is described adequately by the "power law"

06

model and the flow index *i.e.*, it obeys $\tau = \mu \left(-\frac{dv}{dx} \right)^n$, n is 0.33. The

apparent viscosity (μ_a) of the modified fluid is equal to the viscosity (μ) of the original liquid at a shear rate, $\frac{du}{dy}$ is 1000 s^{-1} . Determine the rheological properties and represent as a rheological equation.

UNIT - III

4. a) Heat is generated within a solid sphere of radius R at a rate of S_n and this heat varies parabolically as $S_n = S_{n0} \left[1 + b \left(\frac{r}{R} \right)^2 \right]$ where S_{n0} is the heat produced per unit volume at the center. The surface of the sphere is kept at a constant temperature. The thermal conductivity can be assumed to be constant. Derive an expression for steady state heat flux and temperature distribution. 14

b) Heat is generated within a sphere at a rate of $10 \times 10^5 \text{ kW/m}^3$. The diameter of the sphere is 0.16 m. The surface temperature of sphere is 100°C . The thermal conductivity of the metal of the sphere is $1400 \text{ W/m}^\circ\text{C}$. Calculate the temperature (a) at the center of the sphere (b) at 0.02 m. 06

OR

5. a) An iron rod is covered with three different materials of insulation A, B and C. Develop an expression for heat transfer by conduction through the composite material. 10

b) A standard steel pipe of inside diameter 5.2 cm and wall thickness 0.31 cm is carrying steam and is insulated with 5 cm layer of 85% magnesia covered with 10 cm layer of cork material. Estimate heat loss per hour per meter of pipe if the inside surface of pipe is maintained at 140°C and outer surface of cork is 30°C . Given $k_{\text{steel}} = 42.2 \text{ W/mK}$, $k_{85\% \text{ magnesia}} = 0.09 \text{ W/mK}$ and $k_{\text{cork}} = 0.03 \text{ W/mK}$. Calculate the interface temperatures. 10

UNIT - IV

6. a) Determine the expression for flux for a gas A diffusing through a stagnant gas B. 10

b) Oxygen (X) is diffusing through methane gas (Y) under steady state conditions with methane gas non-diffusing. The total pressure is $1 \times 10^7 \text{ Pa}$, and the temperature 10°C . The partial pressure of oxygen at two planes 2 mm apart is 13,000 and 6500 Pa, respectively. The diffusivity of the mixture is $1.86 \times 10^{-5} \text{ m}^2/\text{s}$. Calculate the rate of diffusion of oxygen in kmol/s through each square meter of two planes 10

UNIT - V

7. a) Briefly explain the Reynolds analogy and Colburn Chilton analogy. 06

b) Derive an equation of continuity in Cartesian co-ordinates. 10

c) Write the Navier-Stokes equation and Euler equation. For what type of fluid/flow are these equations applicable? 04
