

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH5PCTRP

Course: Transport Phenomena

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>If the velocity distribution for a fluid over a plate is given by</p> $v_z = \frac{2}{3} y - y^2$ <p>Where, v_z is the velocity in m/s at a distance y meter above the plate, determine the shear stress at $y = 0$ and $y = 0.15$ m. The dynamic viscosity of the fluid is 8.63 P.</p>	CO1	PO1	10
	b)	State the Newton's law of viscosity, Fourier's law of heat conduction, and Fick's law of diffusivity with equations.	CO1	PO1	06
	c)	What do you understand by transport phenomena? What are the three levels at which transport phenomena can be studied?	CO1	PO1	04
UNIT - II					
2	a)	An aqueous homogenous solution of two polymers is pumped through an annulus at 293 K. The horizontal annulus of 8.23 m long, the outside radius of the inner cylinder is 1.25 cm. The inside radius of the outer cylinder is 2.794 cm. The density is 1287 kg/m ³ and viscosity is 566×10^{-4} Pa s at 293 K. Calculate the volumetric flow rate when the impressed pressure drop is 37.164 kN/m ² .	CO2	PO2	08
	b)	Derive an expression for maximum velocity and mass flow rate for flow of liquid over an inclined plane which is at an angle β with the vertical axis.	CO3	PO4	12
OR					
3	a)	Oil is flowing in a laminar region in a 1.27×10^{-2} m diameter tube at the rate of 22.72 l/min. The oil viscosity is 250×10^{-3} N s/m ² and its density is 958 kg/m ³ . Calculate (a) The pressure drop per meter of the pipe length and (b) Wall stress in N/m ² (c) The velocity at the center of the tube and (d) Radial position at which the velocity is equal to the average velocity	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	A Newtonian fluid is flowing through a circular vertical tube, due to pressure difference, of length L and radius R . Derive an expression for shear stress and the velocity distribution in the tube. Draw the velocity distribution in the tube.	CO3	PO4	12
		UNIT - III			
4	a)	A copper wire has a diameter of 3 mm and a length of 5 m. For what voltage drop would the temperature at the wire axis be 10°C , if the surface temperature of the wire is 20°C ? Data: Lorenz number of copper = $k/(k_e T_0) = 2.23 \times 10^{-8}$ volt $^2/\text{K}^2$.	CO3	PO4	08
	b)	Derive an equation that relates the average temperature and the maximum temperature for heat conduction with an electrical source of heat.	CO3	PO4	12
		OR			
5	a)	Determine the heat flux and overall heat transfer coefficient for a composite wall of three materials with thermal conductivity of k_1 , k_2 , k_3 respectively and located between two fluid streams at Temperatures T_1 and T_2 .	CO3	PO4	10
	b)	Heat is generated within a sphere at a rate of 20×10^5 kW/m 3 . The diameter of the sphere is 0.163 m. The surface temperature of sphere is 100°C . The thermal conductivity of the metal of the sphere is 1400 W/m $^{\circ}\text{C}$. Calculate the temperature at the center of the sphere and at radius of 0.04 m.	CO3	PO4	10
		UNIT - IV			
6	a)	Gas 'A' dissolves in liquid 'B' in a beaker and diffuses isothermally into the liquid phase. As it diffuses, 'A' also undergoes an irreversible first order homogeneous reaction, $\text{A} + \text{B} \rightarrow \text{AB}$. Rate of reaction is given by, $-r_A = k''_1 c_A$, where k''_1 is first order rate constant based on volume (1/s). Derive an equation to determine the concentration distribution and molar flux and list all the assumptions made.	CO4	PO3	14
	b)	The diffusivity of methanol in air is determined by observing the steady state evaporation of CH_3OH into a tube containing air. The distance between the methanol liquid level and the top of the tube is 16cm. The pressure and temperature are 1 atm and 298 K. The vapour pressure of methanol at 298 K is 17 kPa and its specific gravity is 0.7914. The cross sectional area of the tube is 0.8 cm 2 . It is found that 0.0887 cc of methanol evaporates in a 10 h period after steady state has been attained. Estimate the diffusivity of methanol-air system.	CO4	PO3	06
		UNIT - V			
7	a)	Derive the Navier-Stokes equations from basics for Cartesian coordinates.	CO6	PO6	14
	b)	Briefly explain Prandtl Analogy.	CO6	PO6	06
