

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH5PCTRP / 22CH5PCTRP

Max Marks: 100

Course: Transport Phenomena

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	State and explain Fourier's law of heat conduction.								
		b)	Discuss the various non-Newtonian fluids with the corresponding rheological equations.								
		c)	The lower plate is being pulled at a relative velocity of 0.4 m/s greater than the top plate the fluid used is at 24°C, viscosity is 0.4×10^{-2} N.s/m ² . How far apart the should the two plates be placed so that the shear stress is 0.3 N/m ² (N). If the oil viscosity = 0.4×10^{-2} N.s/m ² used and plates are kept separated at a distance calculated in part a and the velocity is same as part a what is the shear stress and shear rate								
			OR								
	2	a)	What are thixotropic and rheopectic fluids? Give examples.								
		b)	Calculate the rate of heat transfer per unit area through a copper plate 45mm thick, one face of which is maintained at 350°C and the other face at 50°C. The thermal conductivity is 370 W/m °C.								
		c)	Explain Fick's law of diffusion.								
			UNIT - II								
	3	a)	A Newtonian fluid of constant μ and ρ is in laminar flow in a circular tube of radius R. Make a differential momentum balance and obtain the expressions of momentum flux and velocity distributions for (i) Newtonian fluid (ii) Bingham fluid								
		b)	Determine the pressure gradient and the shear stress at the two horizontal parallel plates 100 mm apart. the maximum velocity for								

		the laminar flow of oil is 2 m/s. Given viscosity is 2 Pas. Determine also the discharge /meter width.			
		OR			
4	a)	A fluid with constant viscosity and density flows along an inclined flat surface under the influence of gravity. Derive the equation for momentum flux distribution and velocity distribution for a Newtonian fluid. Write all the assumptions. i. The film thickness is measured from the wall. ii. The film thickness is measured from the liquid surface.	CO2	PO2	12
	b)	Find the radius of capillary tube from the following flow data <ul style="list-style-type: none">• Length of the tube =50 cm.• Kinematic viscosity = 4×10^{-5} m²/s.• Density of liquid= 700 kg/m³.• Pressure drop in horizontal tube = 6×10^5 Pa.• Mass flow rate = 5×10^{-3} kg/s.	CO2	PO2	08
		UNIT - III			
5	a)	Consider a nuclear fuel element of spherical form. It consists of a sphere of fissionable material with radius R_F surrounded by a spherical aluminum cladding with outer radius R_C . Derive expression for heat flux profile in fissionable material and cladding.	CO 3	PO4	10
	b)	Derive an expression for heat flow through a solid sphere with internal heat generation. Prove that for heat transfer by conduction from a sphere of diameter D to a stagnant infinite fluid medium $Nu=2$	CO 3	PO4	10
		OR			
6	a)	Derive the equation for heat conduction through a composite wall.	CO3	PO4	07
	b)	Derive an expression for energy flux distribution, temperature distribution, and maximum temperature rise for heat conduction with an electrical heat source.	CO3	PO4	13
		UNIT - IV			
7	a)	Derive an expression for rate of sublimation of iodine sphere in still air.	CO4	PO3	07
	b)	Gas A dissolves in liquid B and diffuses into the liquid phase. A undergoes an irreversible first order chemical reaction $A+B \rightarrow AB$. Find concentration profile of A in B. Also find molar flux.	CO4	PO3	13
		OR			
8	a)	Oxygen is diffusing in a mixture of oxygen-nitrogen at 1 std atm, 25°C. Concentration of oxygen at planes 2 mm apart are 10 and 20 volume % respectively. Nitrogen is non-diffusing.	CO4	PO3	07

		<p>i. Derive the appropriate expression to calculate the flux of oxygen.</p> <p>ii. Calculate the flux of oxygen. Diffusivity of oxygen in nitrogen = $1.89 \times 10^{-5} \text{ m}^2/\text{sec}$.</p>			
	b)	Consider a catalytic reactor in which a gaseous reactant A diffuses through a stagnant gas film to reach the catalyst surface. At the catalyst surface, the reaction occurs instantaneously and product B diffuses back out through the gas film to the main turbulent stream. Derive an expression for variation of mole fraction of component A with Z, if the reaction is $2A \rightarrow B$.	CO4	PO3	13
		UNIT - V			
9	a)	Derive equation of motion in terms of shear stress and velocity using Cartesian coordinates. State all the assumptions.	CO5	PO3	12
	b)	Explain the term partial time derivative and substantial time derivative with example.	CO5	PO3	08
		OR			
10	a)	Discuss Reynold's analogy between momentum, heat and mass transfer.	CO 6	PO2	10
	b)	Derive equation of continuity in terms of shear stress and velocity using Cartesian coordinates. State all the assumptions.	CO5	PO3	10
