

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester:VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 23CH6OECOM / 22CH6OECMS

Max Marks: 100

Course: Composite Materials

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are ceramics? Describe the general properties of ceramics.	<i>CO1</i>	<i>PO</i> 1	05
	b)	Why are ceramics brittle in nature while metals are ductile?	<i>CO1</i>	<i>PO1</i>	05
	c)	Define traditional ceramics. Discuss various types of traditional ceramics in detail.	<i>CO2</i>	<i>PO2</i>	10
OR					
2	a)	What is reaction bonding? Explain the steps involved in the Reaction Bonded Silicon Carbide (RBSC) method.	<i>CO2</i>	<i>PO2</i>	06
	b)	Draw a flow-chart for sol-gel process.	<i>CO2</i>	<i>PO2</i>	06
	c)	What is a preceramic polymer? Explain steps involved in the production of silicon carbide ceramic using polymer pyrolysis route.	<i>CO2</i>	<i>PO2</i>	08
UNIT - II					
3	a)	Define sintering and discuss the various driving forces involved in sintering in detail.	<i>CO3</i>	<i>PO3</i>	10
	b)	Draw a labelled diagram of the tape casting method used for producing ceramic films.	<i>CO3</i>	<i>PO3</i>	05
	c)	Differentiate between wet-beg pressing and dry-beg pressing.	<i>CO3</i>	<i>PO3</i>	05
OR					
4	a)	List the various types of CVD reactor used for thin film disposition. Discuss any two in detail.	<i>CO3</i>	<i>PO3</i>	10
	b)	Define glass fiber and describe the steps involved in the production of glass fibers along with a diagram.	<i>CO3</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III						
5	a)	What are the key characteristic of synthesized advanced ceramic powder?	CO1	PO1	05	
	b)	Define comminution. List the equipment's used for comminution and discuss any two in detail.	CO2	PO2	10	
	c)	Draw a neat, and labelled diagram of the spray drying process.	CO2	PO2	05	
OR						
6	a)	Define polymer-clay nanocomposite. Discuss various methods for their preparation.	CO4	PO7	10	
	b)	Explain the mechanism of self-healing composites with a suitable diagram.	CO4	PO7	10	
UNIT - IV						
7	a)	Differentiate between extensive and intensive mixing.	CO4	PO7	05	
	b)	List the equipment used for blending. Discuss any two in detail.	CO4	PO7	10	
	c)	Define metal matrix composites (MMCs) and discuss their applications.	CO5	PO12	05	
OR						
8	a)	Explain the stir casting methods for preparing metal matrix composites (MMCs). Discuss its advantage and disadvantages.	CO4	PO7	10	
	b)	Draw a labelled diagram of spray forming for the production of MMCs and explain.	CO5	PO12	10	
UNIT - V						
9	a)	Explain the role of fiber orientation in fiber-reinforced polymer composites.	CO5	PO12	05	
	b)	Write short note on the following manufacturing methods: (i) Hand lay-up (ii) pultrusion	CO5	PO12	10	
	c)	List any five applications of polymer composites in the automobile industry.	CO5	PO12	05	
OR						
10	a)	Define polymer composites. Name any two fibers used in fiber-reinforced polymer composites.	CO5	PO12	05	
	b)	Write short note on the following manufacturing methods: (i) Filament winding (ii) sheet molding compound (SMC)	CO5	PO12	10	
	c)	List any five major applications of polymer-reinforced composites.	CO5	PO12	05	
