

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH6DCCR2

Max Marks: 100

Course: Chemical Reaction Engineering - II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																												
1	a)	What is stimulus response technique? Explain in detail about the pulse and the step input experiments.	CO1	PO 3	8																												
	b)	<p>First order reaction A \rightarrow Products is carried out in a PFR. The specific reaction rate is 0.9sec^{-1}. The results of the tracer experiment are as follows</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Time (sec)</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>12</td><td>14</td> </tr> <tr> <td>C_{Pulse}(g/lit)</td><td>0</td><td>0.5</td><td>3.75</td><td>6.9</td><td>9.15</td><td>7.5</td><td>4.9</td><td>3.15</td><td>2.7</td><td>1.75</td><td>1.1</td><td>0.2</td><td>0</td> </tr> </table> <p>Calculate the conversion of reactant A using i) Ideal PFR ii) Ideal CSTR Also draw the E Curve for the data</p>	Time (sec)	0	1	2	3	4	5	6	7	8	9	10	12	14	C _{Pulse} (g/lit)	0	0.5	3.75	6.9	9.15	7.5	4.9	3.15	2.7	1.75	1.1	0.2	0	CO2	PO4	12
Time (sec)	0	1	2	3	4	5	6	7	8	9	10	12	14																				
C _{Pulse} (g/lit)	0	0.5	3.75	6.9	9.15	7.5	4.9	3.15	2.7	1.75	1.1	0.2	0																				
	OR																																
2	a)	Explain the non-ideal flow patterns that may arise in the process equipment's with the help of neat sketches.	CO2	PO4	10																												
	b)	<p>The concentration readings given below represent a continuous response to a pulse input into a closed vessel.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Time (min)</td><td>0</td><td>5</td><td>10</td><td>15</td><td>20</td><td>25</td><td>30</td><td>35</td> </tr> <tr> <td>C_{Pulse} (g/lit)</td><td>0</td><td>3</td><td>5</td><td>5</td><td>4</td><td>2</td><td>1</td><td>0.001</td> </tr> </table> <p>This vessel is used as a reactor for the decomposition of a liquid with a rate $-r_A = kC_A$ The value of $k = 0.307\text{min}^{-1}$ Estimate the fraction of the reactant that is unconverted in a real reactor and compare the results with Ideal PFR</p>	Time (min)	0	5	10	15	20	25	30	35	C _{Pulse} (g/lit)	0	3	5	5	4	2	1	0.001	CO2	PO4	10										
Time (min)	0	5	10	15	20	25	30	35																									
C _{Pulse} (g/lit)	0	3	5	5	4	2	1	0.001																									

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II																							
3	a)	Deduce a rate equation for an instantaneous reaction when the concentration of liquid is very low.	CO3	PO3	12																		
	b)	<p>Gaseous reactant A absorbs and reacts with the liquid B in the liquid according to the reaction $A(g \rightarrow l) + B(l) \rightarrow R(l)$, $-r_A = k C_A C_B$ in a packed bed reactor where $p_A = 100\text{Pa}$ and $C_B = 1 \text{ mol}/(\text{m}^3 \text{ liquid})$</p> <p>i. Calculate the rate of reaction in $\text{mol}/(\text{hr. m}^3 \text{ of reactor})$ ii. Resistance offered by the main body of the liquid</p> <p>Data Given:</p> <p>$K_{Ag} \cdot a = 0.10 \text{ mol}/(\text{hr. m}^3 \text{ of reactor. Pa})$ $f_l = 0.01 \text{ (m}^3 \text{ liquid/m}^3 \text{ of reactor)}$ $K_{Al} \cdot a = 100 \text{ m}^3 \text{ liquid}/(\text{m}^3 \text{ reactor.hr})$ $a = 100 \text{ m}^2/\text{m}^3 \text{ reactor}$ $D_{Al} = D_{Bl} = 10^{-6} \text{ m}^2/\text{hr}$ $k = 10 \text{ m}^3 \text{ liquid}/(\text{mol.hr})$ $H_A = 10^5 \text{ (Pa.m}^3 \text{ liquid)}/\text{mol}$</p>	CO3	PO3	8																		
OR																							
4	a)	Two small samples of solids are kept in a constant environment oven for a period of 1hour under the conditions prevailing in an oven the 4mm particles are 60% converted and the 2mm particles are 90% converted. Find the rate controlling mechanism for the conversion of solids.	CO3	PO3	8																		
	b)	Derive an expression to relate between fractional conversion and the radius of unreacted core for the ash layer controlling for a spherical particle of unchanging size. State the assumptions made.	CO3	PO3	12																		
UNIT - III																							
5	a)	Discuss the various catalyst preparation methods.	CO3	PO3	8																		
	b)	<p>An 8.01 gm of sample is studied with nitrogen adsorption at -195.8°C. The following data are obtained.</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <thead> <tr> <th>P(mm hg)</th><th>Volume adsorbed (cm³)</th></tr> </thead> <tbody> <tr><td>6</td><td>61</td></tr> <tr><td>25</td><td>127</td></tr> <tr><td>140</td><td>170</td></tr> <tr><td>230</td><td>197</td></tr> <tr><td>285</td><td>215</td></tr> <tr><td>320</td><td>230</td></tr> <tr><td>430</td><td>277</td></tr> <tr><td>505</td><td>330</td></tr> </tbody> </table> <p>Calculate the surface area required Data: Density of Nitrogen gas 0.808g/cc</p>	P(mm hg)	Volume adsorbed (cm ³)	6	61	25	127	140	170	230	197	285	215	320	230	430	277	505	330	CO3	PO3	12
P(mm hg)	Volume adsorbed (cm ³)																						
6	61																						
25	127																						
140	170																						
230	197																						
285	215																						
320	230																						
430	277																						
505	330																						
OR																							
6	a)	Explain the properties and mechanism of catalysis.	CO3	PO3	8																		

	b)	Discuss the various estimation methods to characterize properties of the catalyst.	CO3	PO3	6
	c)	Explain how the surface area of catalyst particles are determined using BET method.	CO3	PO3	6
UNIT - IV					
7	a)	Derive an expression to find the effectiveness factor for diffusion through a cylindrical pore of a catalyst (pore diffusion resistance combined with surface kinetics). State the assumptions made.	CO3	PO3	12
	b)	How much catalyst is needed in a packed bed reactor (assume PFR & MFR) for 50% conversion for a feed rate of 2000 mol/hr at a temperature of 125°C & 5atm. $A \rightarrow 4R$, $-r_A' = 96.55(l/(hr \ kg \ catalyst))$ with 20% of inerts present.	CO3	PO3	08
		OR			
8	a)	Discuss the various types of catalyst deactivation.	CO3	PO3	10
	b)	The catalytic decomposition of reactant ($A+R$) is studied in a packed bed reactor filled with 2.4-mm pellets and using a very high recycle rate of product gases (assume mixed flow). The results of a long-time run and additional data are given below.	CO3	PO3	10
		$ \begin{array}{c cccc c} t, \text{ hr} & 0 & 2 & 4 & 6 & \mathcal{D}_e = 5 \times 10^{-10} \text{ m}^3/\text{m cat} \cdot \text{s} \\ X_A & 0.75 & 0.64 & 0.52 & 0.39 & \rho_s = 1500 \text{ kg/m}^3 \text{ cat} \\ & & & & & \tau' = 4000 \text{ kg} \cdot \text{s/m}^3 \end{array} $ Find the kinetics of reaction and deactivation, both in the diffusion-free and in the strong pore diffusion resistance regime.			
		UNIT - V			
9	a)	Derive performance equations for packed bed reactor containing porous catalyst particles.	CO4	PO3	10
	b)	Discuss the design considerations for a three-phase fluidized bed reactor.	CO4	PO3	10
		OR			
10	a)	Compare and contrast the performance characteristics of trickle bed and slurry reactors.	CO4	PO3	10
	b)	Explain the experimental methods used to determine the rates in reactors containing porous catalyst particles.	CO4	PO3	10
