

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH6PCCR2

Course: Chemical Reaction Engineering-2

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			CO	PO	Marks	
<p>Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p>		UNIT – I				
	1	a)	Explain with a neat sketch the causes of non-ideality in the flow reactors	CO1	PO2	06
		b)	Derive the relation between F-curve and E-Curve for a residence time distribution experiment.	CO1	PO2	06
		c)	<p>Dispersed non-coalescing droplets react ($A \rightarrow R$), as they pass through a contactor. Find the average concentration of A remaining in the droplets leaving the contactor if their RTD is given by the curve in below figure.</p> <p>Data:</p> $C_{A0} = 2 \frac{\text{mol}}{L};$ $-r_A = k C_A^2 \quad ;$ $k = 0.5 \frac{L}{\text{mol} \cdot \text{min}}$	CO2	PO4	08
			UNIT – II			
		a)	Derive the general rate expression for a fluid-fluid reaction system for an instantaneous reaction with a low C_B value	CO3	PO3	10
		b)	At high pressure carbon dioxide is absorbed into a solution of sodium hydroxide in a packed column. The instantaneous reaction is as follows.	CO3	PO3	10
			$CO_2 + 2NaOH \rightleftharpoons Na_2CO_3 + H_2O$ <p>At a point in the column where, $P_A = 2 \times 10^5 \text{ Pa}$ and solution of 0.2N. Estimate the rate of absorption, the controlling resistance and what is happening in the liquid film?</p> <p>Data</p> <ul style="list-style-type: none"> • $k_{AL} \times a = 25 \text{ per hour}$ and $k_{AG} \times a = 0.8 \frac{\text{mol}}{m^3 \times h \times Pa}$ • $D_A = 1 \times 10^{-9} \text{ m}^2/\text{sec}$ and $D_B = 10 \times 10^{-8} \text{ m}^2/\text{sec}$ • $f_L = 0.1$ and $H_A = 3000 \frac{m^3 \times Pa}{mol}$ • $a = 100 \frac{m^2}{m^3}$ 			

OR					
3	a)	Develop an expression to estimate the rate for a fluid solid reaction, assuming gas film as the rate controlling step with a neat schematic diagram.	CO3	PO3	10
	b)	<p>Spherical particles of zinc blende of size $R = 1$ mm are roasted in an 8% oxygen stream at 900°C and 1 atm. The stoichiometry of the reaction is.</p> $2\text{ZnS} + 3\text{O}_2 \rightarrow 2\text{ZnO} + 2\text{SO}_2$ <p>Assuming that, the reaction proceeds by the shrinking-core model calculate the time needed for complete conversion of a particle and the relative resistance of ash layer diffusion during this operation.</p> <p><i>Data</i></p> <ul style="list-style-type: none"> • Density of solid, $\rho_B = 4.13 \text{ gm/cm}^3 = 0.0425 \text{ mol/cm}^3$ • Reaction rate constant, $k'' = 2 \text{ cm/sec}$ • For gases in the ZnO layer, $D_e = 0.08 \text{ cm}^2/\text{sec}$ <p>Note that film resistance can safely be neglected as long as a growing ash layer is present.</p>	CO3	PO3	10
Unit III					
4	a)	What are the characteristics of a good catalyst?	CO4	PO3	04
	b)	Briefly explain about foreign substance which is used to decreases the rate of a chemical reaction.	CO4	PO3	06
	c)	<p>The mechanism of decomposition of <i>cumene</i> on the catalyst surface is given by the following reaction:</p> $\text{C}_6\text{H}_5\text{CH}(\text{CH}_3)_2 \rightarrow \text{C}_6\text{H}_6 + \text{C}_3\text{H}_6$ $\text{C(g)} \rightarrow \text{B(g)} + \text{P(g)}$ <p>Mechanism:</p> $\text{C} + \text{S} \xrightleftharpoons{\text{catalyst}} \text{C.S} \dots \text{(Adsorption)}$ $\text{C.S} \xrightleftharpoons{\text{Catalyst}} \text{B.S} + \text{P} \dots \text{(Surface Reaction)}$ $\text{B.S} \xrightleftharpoons{\text{Catalyst}} \text{B} + \text{S} \dots \text{(Desorption)}$ <p>Derive the rate expression if surface reaction controls</p>	CO4	PO3	10
UNIT - IV					
5	a)	Discuss the various types of catalyst deactivation reactions.	CO4	PO3	08
	b)	Oxidation of toluene is carried out over silica alumina spherical catalyst using 0.22 cm particles. It has been found that the pore volume per gram is 0.25 cm^3 and surface area per gram is 251 m^2 . The experiment was conducted at 300°C . The reaction rate was found to be $1.3 \text{ cm}^3/\text{g.sec}$. Estimate the effectiveness factor for the reaction.	CO4	PO3	12
OR					
6	a)	Briefly explain the significance of Thiele Modulus for heterogeneous porous catalytic reactions	CO4	PO3	08

	b)	<p>Derive a relationship to estimate the effectiveness factor for a first order catalytic reaction in a single cylindrical pore with a neat sketch depicting the concentration profile of reactant A. The reaction followed and rate is given as</p> $A \rightarrow \text{product and } -r_A'' = -\frac{1}{S} \frac{dN_A}{dt} = -k'' C_A$ <p>State all the assumptions made to derive the expression.</p>	CO4	PO3	12
		Unit V			
7	a)	How experimental rate of a catalytic reaction is determined for an integral reactor?	CO4	PO3	05
	b)	With a neat sketch explain <i>Carberry</i> basket type experimental mixed flow reactor and give its performance equation.	CO4	PO3	05
	c)	Derive the overall rate expression for a slurry reactor.	CO4	PO3	10
