

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH6PELB2

Course: Petroleum Refining

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			Unit-I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the significance of following thermal properties in petroleum industries (i) Specific heat (ii) API gravity	CO1	PO1	05
		b)	What is the significance of UOP-k factor? How is it determined?	CO1	PO1	05
		c)	Explain the process of TBP analysis with a schematic diagram of TBP apparatus and the TBP curve.	CO1	PO1	10
			Unit-II			
	2	a)	Explain the significance of the various types of inhibitors and combustion aids as additives to gasoline.	CO6	PO7	04
		b)	Explain the ASTM distillation test for gasoline and highlight the characteristic features with the ASTM distillation curve.	CO2	PO2	08
		c)	Describe the following testing methods and their significance: i. Flash point of kerosene ii. Rams bottom method for carbon residue of lube oil	CO2	PO2	08
			Unit -III			
	3	a)	What are the various impurities present in the petroleum crude?	CO3	PO2	04
		b)	Explain gasoline treatment by catalytic desulfurization process with a process flow diagram.	CO6	PO7	08
		c)	Describe the sweetening operation of gases by the ethanolamine treatment process with the process flow diagram.	CO3	PO2	08
			OR			
	4	a)	Describe the sweetening operation of gases by the Stretford process with the process flow diagram.	CO3	PO2	10
		b)	Differentiate between the settling method and electric desalter technique of dehydration of crude pretreatment with a schematic diagram.	CO 3	PO2	10

Unit -IV					
5	a)	Describe the process of fluid catalytic cracking designed by ESSO with a separate transfer line with a schematic diagram. Explain the profile of different parameters with distance in the riser of the Fluid Catalytic Cracking unit (FCC).	<i>CO5</i>	<i>PO2</i>	10
	b)	Explain the following: i. Feedstock requirements for catalytic reforming process. ii. Catalysts for hydrocracking.	<i>CO4</i>	<i>PO3</i>	10
OR					
6	a)	Differentiate between hydrocracking and catalytic cracking.	<i>CO4</i>	<i>PO3</i>	05
	b)	Explain the Carbonium ion mechanism with the help of the chemical reactions involved.	<i>CO4</i>	<i>PO3</i>	07
	c)	Describe the naphtha cracking process with the neat process flow diagram.	<i>CO5</i>	<i>PO2</i>	08
Unit -V					
7	a)	Discuss the various thermal cracking reactions. Mention the feedstock composition, mechanism and conditions.	<i>CO4</i>	<i>PO3</i>	10
	b)	Explain delayed coking operation with the operating conditions and process flow diagram.	<i>CO5</i>	<i>PO2</i>	10
