

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH6PELB3

Max Marks: 100

Course: Polymer Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are thermoplastics? Give examples. List the methods used for melt processing of thermoplastics.	CO1	PO I	05
	b)	Describe how crystallization, molecular orientation, and shrinkage influence the final properties of thermoplastic products.	CO1	PO I	09
	c)	Differentiate between copolymerization and polymer blending.	CO1	PO1	06
OR					
2	a)	Describe the stress-strain behavior of thermoplastic polymers with a schematic diagram, and explain the significance of yield point, necking, and fracture point.	CO1	PO1	10
	b)	Discuss any two standard tests used for evaluating the long-term behavior of polymers in engineering applications.	CO1	PO1	10
UNIT - II					
3	a)	Explain the principle and working of a single-screw extruder with a neat diagram.	CO2	PO2	06
	b)	Explain the extrusion coating process with a neat diagram. Discuss the advantages of extrusion coating over other coating methods.	CO2	PO2	08
	c)	Differentiate between single-screw and twin-screw extruders.	CO2	PO2	06
OR					
4	a)	Describe the functions of the feed zone, compression zone, and metering zone in an extruder.	CO2	PO2	06
	b)	Explain the extrusion film blowing & extrusion blow molding process with a diagram.	CO2	PO2	10
	c)	How does wire drawing differ from conventional extrusion?	CO2	PO2	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Explain the working principle of reciprocating screw injection molding.	CO3	PO2	05
	b)	Write short notes on: (i) Reaction injection molding, (ii) Defects in injection molding	CO3	PO2	08
	c)	Compare injection molding and extrusion molding in terms of process, advantages, and limitations.	CO3	PO2	07
OR					
6	a)	Discuss five major industrial applications of injection molding.	CO3	PO2	05
	b)	Write short notes on: (i) Sandwich molding, (ii) Injection blow molding.	CO3	PO2	08
	c)	Discuss the different types of gates used in injection molding and their applications.	CO3	PO2	07
UNIT - IV					
7	a)	Explain the principle and operation of compression molding with a neat diagram. Enlist its advantages and limitations.	CO4	PO2	10
	b)	Explain the principle and operation of transfer molding with a neat diagram. Enlist its advantages and limitations.	CO4	PO2	10
OR					
8	a)	Explain the principle and working of calendaring with a neat diagram. Enlist its advantages and limitations.	CO4	PO2	10
	b)	Derive an expression for the film thickness of the product and the pressure required in a typical calendaring process.	CO4	PO2	10
UNIT - V					
9	a)	Describe the step-by-step process of vacuum forming with a neat diagram.	CO4	PO2	05
	b)	Explain five major industrial or commercial applications of thermoforming.	CO4	PO2	05
	c)	Describe the principle of rotational molding. Derive the relation for estimating the time required for the molding process.	CO4	PO2	10
OR					
10	a)	Explain the principle of thermoforming and describe the general steps involved.	CO4	PO2	08
	b)	List three advantages and three limitations of rotational molding.	CO4	PO2	06
	c)	Discuss the applications of rotational molding in various industries.	CO4	PO2	06
