

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Program: B.E.

Branch: Chemical Engineering

Course Code: 19CH6DELD1

Course: Numerical Techniques in Chemical Engineering

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT – I	CO	PO	Marks
1	a)	<p>The following equation gives the internal energy of a certain substance.</p> $u = 3.64Pv + 90$ <p>where, u in kJ/kg, v in m³/kg.</p> <p>A system composed of 3.5 kg of this substance expands from an initial pressure of 500 kPa and a volume of 0.25 m³ to a final pressure 100 kPa in a process in which pressure and volume are related by the following relation:</p> $Pv^{1.25} = \text{constant}$ <p>Find Q, ΔU, and W for the process.</p>	CO1	PO2	05
	b)	<p>A finned (pin fin) pipe having wall temperature 95°C dissipating heat in the environment of temperature 60°C. If the fin tip is insulated, then find the temperature at the tip of the fin.</p> <p>Data: Thermal conductivity = 32 W/m°C, fin length = 60 mm, fin diameter = 12 mm, and heat transfer coefficient = 55 W/m² °C.</p>	CO2	PO3	05
	c)	<p>Equilibrium still is purifying benzene and toluene from a small amount of essentially non – volatile impurity. It is initially charged with 20 moles of feed stock of composition $x_f = 0.32$ mole fraction of benzene. Feed is supplied at a rate of 10 moles per hour. The heat input is adjusted so that the total mole of the liquid in the still remains constant. It is desired to estimate the time required for composition of the overhead product rise to 0.4 mole fraction benzene. The relative volatility of benzene and toluene, α, is 2.48.</p>	CO1	PO2	10
		UNIT – II			
2	a)	Derive temperature profile and heat transfer rate for a steady state multilayer cylinder of constant thermal conductivity.	CO2	PO3	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>The first order reaction in series is given by the following relation:</p> $A \xrightarrow{k_1} R ; R \xrightarrow{k_2} S$ <p>This reaction takes place in a batch reactor starting with pure A.</p> <p>(i) Develop the differential equations in terms of the concentrations C_A, C_R and C_S.</p> <p>(ii) Solve the above equation to find $C_R(t)$.</p>	CO2	PO3	10
	c)	<p>A closed kettle of total surface area $A \text{ m}^2$ is heated through this surface by condensing stream at $T_s \text{ }^\circ\text{C}$. The kettle is charged with 'm' kg of a liquid at $T_0 \text{ }^\circ\text{C}$. If the process is controlled by a heat transfer coefficient 'U' $\text{W/m }^\circ\text{C}$, how does the temperature vary with time? Assume the heat transfer coefficient is constant.</p>	CO2	PO3	04
		UNIT - III			
3	a)	<p>Diffusion and reaction takes place in a pore of 1 mm in length. The rate constant of the reaction, $k = 10^{-3} \text{ s}^{-1}$ and the effective diffusivity of species is $10^{-9} \text{ m}^2/\text{s}$. Make 5 parts of the pore and determine the concentration at $x = 0.6 \text{ mm}$. The concentration at the surface of the mouth of the pore is 1 mol/m^3.</p>	CO5	PO2	12
	b)	<p>Air at 35°C and 1 atm flows through a 3.5 mm diameter tube with an average velocity of 35 m/s. The roughness, ϵ, is 0.0014 mm. Calculate the friction factor using following equation:</p> $\frac{1}{\sqrt{f}} = -2 \log \left(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re \sqrt{f}} \right)$ <p>Density of air at 35°C and 1 atm is 1.1455 kg/m^3 and viscosity is $1.895 \times 10^{-5} \text{ kg/m s}$. Apply Newton-Raphson method with initial guess of 0.02 and find friction factor. Determine the result after 2 iterations.</p>	CO5	PO2	08
		OR			
4	a)	<p>Consider a stirred tank heater. It is a 0.5 m tank on its side and 2 m high and is filled with water at 25°C. Water is fed to the tank at a flow rate of 2 L/s and exits out at the same flow rate from the top of the tank. The temperature of the inlet water is 25°C. At time $t = 0 \text{ s}$, water in the tank is heated by a coil containing steam whose overall heat transfer coefficient based on the outer area of the coil is $250 \text{ W/m}^2 \text{ K}$. The outside area of the coil through which heat exchange takes place is 1.5 m^2. The temperature of the steam is 250°C. The specific heat capacity of water is 4184 J/kg K. Find exit water temperature after 10 s using any numerical technique assuming the step length, $h = 10 \text{ s}$.</p>	CO5	PO2	08
	b)	<p>Consider one-dimensional steady state conduction without heat generation taking place in a rectangular slab. The temperature of the left side of the slab is 150°C and of the right side is 250°C. The length of the slab is 6 cm and the thermal conductivity of the slab</p>	CO5	PO2	12

		<p>is 150 W/cm K. Make five uniform divisions. The governing equation is as given below:</p> $k \frac{d^2T}{dx^2} = 0$ <p>Apply discretization method and find TDMA matrix. Solve the matrix and find the temperature at different point of the slab.</p>			
		UNIT – IV			
5	a)	<p>Derive the continuity equation.</p> $\frac{\partial(\rho u_x)}{\partial x} + \frac{\partial(\rho u_y)}{\partial y} + \frac{\partial(\rho u_z)}{\partial z} + \frac{\partial p}{\partial t} = 0$	CO3	PO3	08
	b)	<p>Obtain the difference equation for a multistage counter current liquid-liquid extraction process and solve the equation.</p>	CO4	PO4	12
		OR			
6	a)	<p>Formulate partial differential equation for Fick's second law of diffusion.</p> $D_{AB} \nabla^2 C_A + r_A = \nu \cdot \nabla C_A + \frac{\partial C_A}{\partial t}$	CO3	PO3	08
	b)	<p>Find the value of $u(x, t)$ satisfying the parabolic equation.</p> $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ <p>The boundary conditions are $u(0, t) = u(8, t) = 0$ and $u(x, 0) = 4x - \frac{1}{2}x^2$, at points $x = i$: $i = 0, 1, 2, \dots, 8$ and $t = \frac{1}{8}j$: $j = 0, 1, 2, 3, 4$, and 5.</p>	CO5	PO2	12
		UNIT – V			
7	a)	<p>A first order reaction is conducted in a CSTR. Find concentration of component "A" in Laplace domain at outlet of the reactor.</p>	CO6	PO4	08
	b)	<p>Derive the transfer function for a single tank liquid level system.</p>	CO6	PO4	08
	c)	<p>A thermometer having a time constant of 0.1 min is at steady state temperature of 90°C. At time $t = 0$, the thermometer is placed in a temperature bath maintained at 100°C. Determine the time needed for the thermometer to read 98°C.</p>	CO6	PO4	04
