

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH6DELD2

Course: Interfacial Phenomena

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Explain the interfacial phenomena causing the Marangoni effect with a neat sketch. 06
	b) A needle has a length of 0.032 m. When placed gently on the surface of water, this needle will float. What is the weight of the heaviest needle that will float? 04
	c) With the help of plots of force versus time, illustrate the Du-Nouy ring method for the measurement of surface tension. 10

OR

2	a) Distinguish reversible and irreversible colloids with the help of a specific example for each. 04
	b) State the Schulze-Hardy rule. What is its significance? 06
	c) With the help of a neat sketch, illustrate the capillary rise method for the measurement of surface tension. 10

UNIT - II

3	a) Derive the expression for pressure jump across a curved surface with the help of a neat sketch. 10
	b) Explain capillary condensation with the help of the relevant equation and a neat sketch. 10

UNIT - III

4	a) Derive the Young-Dupre equation with the help of a neat sketch. 05
	b) Calculate the HLB value of a mixture containing 75% sodium dodecyl sulphate and 25 % potassium laurate (Lauric acid Formula: $C_{12}H_{24}O_2$). Data: 05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

Group	Group number
$-\text{SO}_4^- \text{Na}^+$	38.7
$-\text{COO}^- \text{K}^+$	21.1
$-\text{COO}^- \text{Na}^+$	19.1
Sulphonate	11
$-\text{N}$ (tertiary amine)	9.4
Ester (sorbitan ring)	6.8
Ester (free)	2.4
$-\text{COOH}$	2.1
$-\text{OH}$ (free)	1.9
$-\text{O}-$	1.3
$-\text{OH}$ (sorbitan ring)	0.5
$-\text{CH}_3$	0.475
$-\text{CH}_2-$	0.475
$-\text{CH}=$	0.475
$-(\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{O}-)$	0.15

c) With the help of neat sketches, illustrate the emulsion breakdown process. **10**

OR

5 a) Define contact angle. How does it affect wetting? **06**
 b) What are the cloud point and haze point? **04**
 c) Derive the expression for 'Critical Radius' in the characteristic behavior of Ostwald Ripening. **10**

UNIT - IV

6 a) With the help of neat sketch, explain the formation and structure of the electrostatic double layer. **10**
 b) Define electrokinetic phenomena. Illustrate the phenomenon of electrophoresis in detail with the help of a sketch. **10**

UNIT - V

7 a) Elucidate how surfactants are classified based on the type of their head groups. Give specific examples and applications of each group. **10**
 b) State the principle and demonstrate the mechanism of liquid membrane permeation, with a neat schematic diagram. **10**
