

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

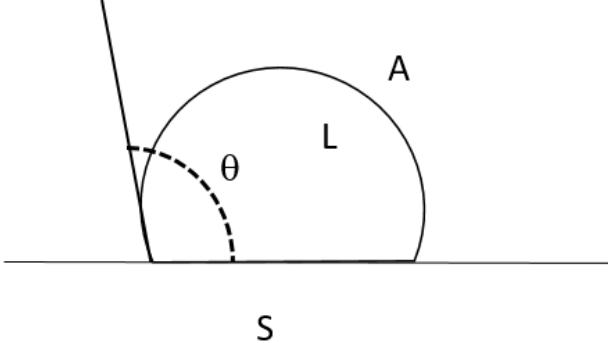
Program: B.E.

Branch: Chemical Engineering

Course Code: 19CH6DELD2

Course: Interfacial Phenomena

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT – I		
			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define surface tension. What are the units of surface tension?	CO1	PO2
		b)	A thin and light ring of platinum material of radius 3 cm is rested flat on a liquid surface. When slowly raised, it is found that the pull required is 0.03 N force. Find the surface tension of the liquid by du Nuoy ring method.	CO4	PO2
		c)	Explain with a neat diagram and governing equations, the method of surface tension measurement by drop weight method.	CO4	PO2
OR					
	2	a)	Describe with a schematic diagram that surface tension is same as the surface free energy.	CO1	PO2
		b)	Describe the method of measurement of surface tension of a liquid (γ) by capillary rise method. Note that the capillary is of radius r and density of liquid is ρ .	CO4	PO2
		c)	A drop of water at 25 °C and of 0.4 cm radius is split into 125 tiny drops. Find the increase in surface energy.	CO4	PO2
UNIT – II					
	3	a)	Derive the equation of excess pressure for a spherical bubble of radii of curvature R_1 and R_2 . The ambient pressure is P_a and surface tension of liquid is γ .	CO2	PO3
		b)	With the help of the Kelvin's equation, show the relationship between the surface tension and vapour pressure of liquid across a curved surface of radius r . The molecular weight of the liquid is M and, room temperature and pressure are T and P respectively.	CO2	PO3

UNIT – III					
4	a)	What are the different modes of spreading available? Explain the expression of change in free energy of the system due to spreading.	CO1	PO2	06
	b)	A liquid L is dropped on the top of a solid S. The figure below indicates the condition. Show that the spreading coefficient depends on the tensions between solid, liquid and air.	CO1	PO2	07
	c)	What is Young's equation? With the help of Young's equation show the relationship between work of adhesion and work of cohesion.	CO1	PO2	07
OR					
5	a)	Explain the stability of an emulsion from thermodynamics point of view.	CO3	PO6	05
	b)	How does phase inversion take place in emulsion from oil-in - water (O/W) to water-in oil (W/O)?	CO3	PO6	07
	c)	Explain Winsor Type-I and Winsor Type-II system's phase diagrams.	CO3	PO6	08
UNIT – IV					
6	a)	Explain Stern and Gouy-Chapman model of electrostatic double layer with a neat diagram.	CO1	PO2	10
	b)	Derive the expression for the number of adsorbed ions with the help of Stern theory.	CO1	PO2	10
UNIT – V					
7	a)	What is the reason behind the unique characteristics of a surfactant molecule? Explain the various variants of a surfactant with example and the industrial applications.	CO6	PO6	08
	b)	What is HLB value of a surfactant? Calculate the HLB value of Alkyl Benzene Sulphate $C_7H_7SO_4^-Na^+$. HLB group number of $-SO_4^-Na^+$ is 38.7 and $-CH_2-$ is 0.475.	CO6	PO6	04
	c)	Elucidate Foam separation.	CO5	PO12	08