

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

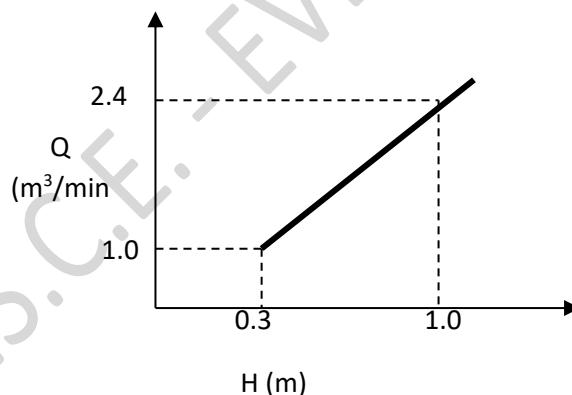
Programme: B.E.

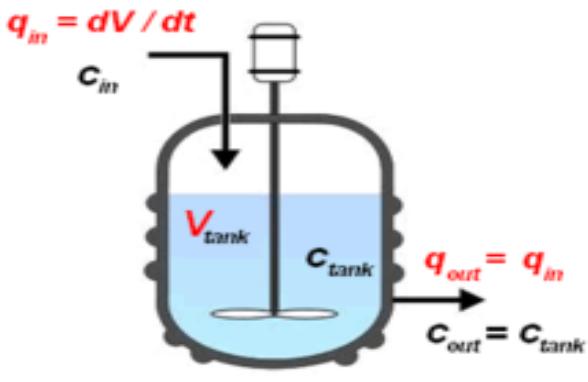
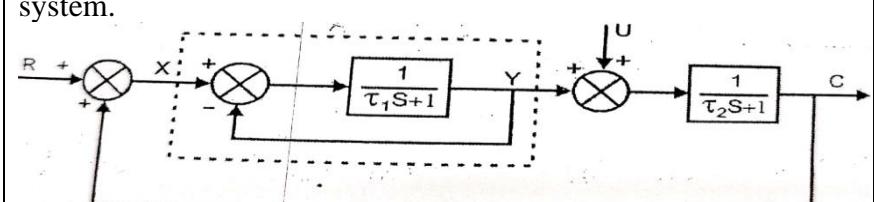
Semester: VI

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH6PCPCE


Max Marks: 100



Course: Process Control Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Develop first order transfer function for mercury thermometer.	CO1	PO 2	08
	b)	<p>A tank having a cross-sectional area of 2 m^2 is operating at steady state with an inlet flow rate of $2.0 \text{ m}^3/\text{min}$. The flow head characteristics are shown in Figure.</p> <p>i. Develop the transfer function $H(s)/Q(s)$</p> <p>ii. If the flow to the tank increases from 2.0 to $2.2 \text{ m}^3/\text{min}$ according to a step change, calculate the level h two minutes after the change occurs.</p>	CO2	PO2	12
OR					
2	a)	<p>Develop first order transfer function for continuous stirred tank reactor by referring below sketch. Assume the reaction is of first order reaction.</p> <p>$A \rightarrow B$; First order reaction rate can be written as $r = K C_{\text{out}}$.</p>	CO1	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>A thermometer is observed to exhibit the first order dynamics is having time constant 10 second and it is placed in bath. After the thermometer reaches steady state temperature of 30° C with the bath, the temperature of the bath is linearly increased with time at a rate of 6° C /minute. Sketch the response of the thermometer. Determine the dynamic error and time lag for the system.</p>	CO2	PO2	12
UNIT - II					
3	a)	<p>Derive transient response for second order under damped system for step input.</p>	CO2	PO2	10
	b)	<p>A step change of magnitude 6 is introduced into a system having transfer function</p> $\frac{Y(S)}{X(S)} = \frac{10}{(S^2 + 1.6S + 4)}$ <p>Determine: i) % Overshoot; ii) Decay ratio; iii) Rise time; iv) Period of oscillation.</p>	CO2	PO2	10
OR					
4	a)	<p>Obtain a response equation when a system is subjected to impulse forcing function for a second order underdamped system and critically damped system.</p>	CO2	PO2	10
	b)	<p>The overall transfer function of the control system is given as,</p> $G(S) = \frac{16}{(1.5 S^2 + 2.4S + 6)}$ <p>A step change of magnitude 6 is introduced into the system. Evaluate: i) %Overshoot; ii) Period of oscillation; iii) Natural period of oscillation; iv) Ultimate value of response.</p>	CO2	PO2	10
UNIT - III					
5	a)	<p>Discuss transfer function of servo and regulating system for negative feedback.</p>	CO3	PO4	10
	b)	<p>Using the block diagram reduction technique. Simplify the overall transfer function of the multiloop block diagram shown in figure. Write overall transfer function for both servo and regulating system.</p>	CO3	PO4	10

OR					
6	a)	Derive the transfer function for PD and PI controller.	CO3	PO4	10
	b)	Simplify the given block diagram and evaluate overall transfer function $Y(s) / X(s)$.	CO3	PO4	10
UNIT - IV					
7	a)	Develop offset equation for PD controller in case of servo mechanism for step change for the following block diagram.	CO3	PO4	10
	b)	A proportional derivative controller is used to control the multicapacity control system having time constants $\tau_1 = 1$ min and $\tau_2 = 1.8$ min. The gain of controller $K_c = 4$ and derivative time $\tau_d = 50$ min. assume unity feedback control. A step change of magnitude 0.8 is given to the set point. The system is subjected to servo mechanism control. Evaluate the offset.	CO3	PO4	10
OR					
8	a)	Develop offset equation for PID controller in case of regulator mechanism for step change for the following block diagram.	CO3	PO4	10
	b)	A proportional integral controller is used to control the first order control system with time constant of 4 seconds and $\tau_i = 60$ second. The gain of the controller is 4. The load variable is given a step change of 0.8. Determine the offset.	CO3	PO4	10
UNIT - V					
9	a)	Discuss stepwise procedure to plot Routh Hurwitz stability criteria.	CO4	PO4	10

	b)	Determine the stability of the control system whose transfer function is given by the characteristics equation. $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$	CO4	PO4	10
		OR			
10	a)	Discuss the rules for plotting the root locus diagram.	CO4	PO4	10
	b)	Draw bode diagram for the system having transfer function $G(s) = \frac{1}{(s+1)}$	CO4	PO4	10

B.M.S.C.E. - EVEN SEM 2024-25