

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH6PCPED

Course: Process Equipment Design

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. Answer Unit I and Unit IV are compulsory. Answer any ONE full question from choosing Unit II and Unit III.
2. Missing data, if any, may be suitably assumed & stated.
3. Perry's Chemical Engineers Handbook, IS 4503 and IS 2825 Unfired Pressure Vessel Codebooks are permitted to use.

			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	UNIT – I a) If you are a design engineer working in a chemical company and want to design chemical equipment, explain the various steps followed to obtain the final design.	CO3	PO4	08	
			b) Discuss the various pressure vessel enclosures employed to fabricate pressure vessels, with equations.	CO3	PO4	06
			c) How are flanges classified? Explain.	CO3	PO4	06
	2	UNIT – II Design a 1-2 shell and tube heat exchanger required to cool 75,000 kg/h of ethylene glycol from 120 °C to 100 °C using toluene as the coolant. Toluene is heated from 25 °C to 60 °C. Use steel tubes 14 BWG thickness having an OD of $\frac{3}{4}$ inch and tubes of 8 feet in length which are laid in a triangular pitch of one inch. The shell contains 25% cut segment baffles spaced 152 mm apart.				
			a)	PO2	05	
			b)	PO4	15	
			c)	PO4	15	
			d)	PO4	10	
			e)	PO4	10	
			f)	PO2	05	

		UNIT - III																					
3		<p>A continuous distillation column is to be designed for the separation of an equimolar mixture of n-heptane and n-octane. The top and bottom products should have 98% purity and the column is to be operated slightly above the atmospheric pressure, with operating reflux ratio of 2.5. Feed is admitted as a saturated liquid to the column. The feed rate to the column is 9000 kg/h. The plate spacing may be assumed to be 0.45 m and the overall efficiency of the distillation column is about 75%.</p> <p>VLE data for the system is as follows:</p> <table border="1"> <tr> <td>Mole fraction, x</td><td>0.0</td><td>0.13</td><td>0.22</td><td>0.32</td><td>0.57</td><td>0.69</td><td>0.92</td><td>1.0</td></tr> <tr> <td>Mole fraction, y</td><td>0.0</td><td>0.24</td><td>0.37</td><td>0.50</td><td>0.74</td><td>0.83</td><td>0.96</td><td>1.0</td></tr> </table>	Mole fraction, x	0.0	0.13	0.22	0.32	0.57	0.69	0.92	1.0	Mole fraction, y	0.0	0.24	0.37	0.50	0.74	0.83	0.96	1.0			
Mole fraction, x	0.0	0.13	0.22	0.32	0.57	0.69	0.92	1.0															
Mole fraction, y	0.0	0.24	0.37	0.50	0.74	0.83	0.96	1.0															
	a	Make overall material balance, find the total number of plates in the column and calculate the height of the column.	CO2	PO4	15																		
	b	Calculate the diameter of the fractionating column.	CO2	PO4	10																		
	c	Calculate the condenser and re-boiler loads by assuming the steam is available at 2 bar pressure.	CO3	PO4	10																		
	d	Establish plate specifications and bubble cap design.	CO3	PO4	10																		
	e	Design the diameter of gas and residue outlet nozzles.	CO3	PO4	10																		
	f	Draw the schematic of the distillation column designed.	CO2	PO4	05																		
		UNIT - IV																					
4	a	An evaporator drum, cylindrical in shape, 1.7 m internal diameter, and 1.9 m height is to be designed for internal operating pressure of 400 mmHg and 90°C. The vessel is to have a tori-spherical head (100-06). Outside pressure is atmospheric. The vessel will be fully radiographed. Material: stainless steel, IS: 1570-1961: 15Cr90Mo55. Estimate the thickness of shell and Tori-spherical head based on internal pressure.	CO3	PO4	10																		
	b	Pressure vessel of internal diameter 150 cm operates at 0.05 kg/mm ² . The vessel must be provided with a nozzle 10 cm internal diameter. The nozzle is welded to the shell wall and does not project inside the vessel. Permissible stress of the material is 10.20 kg/mm ² . Corrosion allowance is 1 mm and welded joint efficiency is 85%. Estimate the reinforcement required for the nozzle.	CO3	PO4	10																		
